Browse > Article
http://dx.doi.org/10.13103/JFHS.2014.29.2.085

Human and Animal Disease Biomarkers and Biomonitoring of Deoxynivalenol and Related Fungal Metabolites as Cereal and Feed Contaminants  

Moon, Yuseok (Department of Biomedical Sciences, Pusan National University School of Medicine)
Kim, Dongwook (National Institute of Animal Science, RDA)
Publication Information
Journal of Food Hygiene and Safety / v.29, no.2, 2014 , pp. 85-91 More about this Journal
Abstract
Deoxynivalenol (DON) and related trichothecene mycotoxins are extensively distributed in the cereal-based food and feed stuffs worldwide. Recent climate changes and global grain trade increased chance of exposure to more DON and related toxic metabolites in poorly managed production systems. Monitoring the biological and environmental exposures to the toxins are crucial in protecting human and animals from toxicities of the hazardous contaminants in food or feeds. Exposure biomarkers including urine DON itself are prone to shift to less harmful metabolites by intestinal microbiota and liver metabolic enzymes. De-epoxyfication of DON by gut microbes such as Eubacterium strain BBSH 797 and Eubacterium sp. DSM 11798 leads to more fecal secretion of DOM-1. By contrast, most of plant-derived DON-glucoside is also easily catabolized to free DON by gut microbes, which produces more burden to body. Phase 2 hepatic metabolism also contributes to the glucuronidation of DON, which can be useful urine biomarkers. However, chemical modification could be very typical depending on the anthropologic or genetic background, luminal bacteria, and hepatic metabolic enzyme susceptibility to the toxins in the diet. After toxin exposure, effect biomarkers are also important in estimating the linkage and mechanisms of foodborne diseases in human and animal population. Most prominent adverse effects are demonstrated in the DON-induced immunological and behavioral disorders. For instance, acutely elevated interleukin-8 from insulted gut exposed to dietaty DON is a dominant clinical biomarker in human and animals. Moreover, subchronic exposure to the toxins is associated with high levels of serum IgA, a biological mediator of IgA nephritis. In particular, anorexia monitoring using mouse models are recently developed to monitor the biological activities of DON-induced feed refusal. It is also mechanistically linked to alteration of serotoin and peptide YY, which are promising biomarkers of neurological disorders by the toxins. As animal-alternative biomonitoring, huamn enterocyte-based assay has been developed and more realistic gut mimetic models would be useful in monitoring the effect biomarkers in resposne to toxic contaminants in the future investigations.
Keywords
DON; biomarkers; biomonitoring; metabolism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Prelusky, D.B., Rotter, B.A., Thompson, B.K.Trenholm, H.L. Effect of the appetite stimulant cyproheptadine on deoxynivalenol- induced reductions in feed consumption and weight gain in the mouse. J. Environ. Sci. Health B. 32, 429-448 (1997).   DOI
2 Gaige, S., Bonnet, M.S., Tardivel, C., Pinton, P., Trouslard, J., Jean, A., Guzylack, L., Troadec, J.D.Dallaporta, M. c-Fos immunoreactivity in the pig brain following deoxynivalenol intoxication: focus on NUCB2/nesfatin-1 expressing neurons. Neurotoxicology. 34, 135-149 (2013).   DOI
3 Wu, W., Bates, M.A., Bursian, S.J., Flannery, B., Zhou, H.R., Link, J.E., Zhang, H.Pestka, J.J. Peptide YY3-36 and 5- hydroxytryptamine mediate emesis induction by trichothecene deoxynivalenol (vomitoxin). Toxicol. Sci. 133, 186- 195 (2013).   DOI
4 Widestrand, J., Lundh, T., Pettersson, H.Lindberg, J.E. Cytotoxicity of four trichothecenes evaluated by three colorimetric bioassays. Mycopathologia. 147, 149-155 (1999).   DOI
5 Shi, Y., Porter, K., Parameswaran, N., Bae, H.K.Pestka, J.J. Role of GRP78/BiP degradation and ER stress in deoxynivalenol- induced interleukin-6 upregulation in the macrophage. Toxicol. Sci. 109, 247-255 (2009).   DOI
6 Yang, H., Park, S.H., Choi, H.J., Do, K.H., Kim, J., An, T.J., Lee, S.H.Moon, Y. Mechanism-based alternative monitoring of endoplasmic reticulum stress by 8-keto-trichothecene mycotoxins using human intestinal epithelial cell line. Toxicol. Lett. 198, 317-323 (2010).   DOI
7 Akbari, P., Braber, S., Gremmels, H., Koelink, P.J., Verheijden, K.A., Garssen, J.Fink-Gremmels, J. Deoxynivalenol: a trigger for intestinal integrity breakdown. Faseb J. 28, 2414-2429 (2014).   DOI
8 Grenier, B.Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins (Basel). 5, 396-430 (2013).   DOI
9 Dewa, Y., Kemmochi, S., Kawai, M., Saegusa, Y., Harada, T., Shimamoto, K., Mitsumori, K., Kumagai, S., Sugita-Konishi, Y.Shibutani, M. Rapid deposition of glomerular IgA in BALB/ c mice by nivalenol and its modifying effect on high IgA strain (HIGA) mice. Exp. Toxicol. Pathol. 63, 17-24 (2011).   DOI   ScienceOn
10 Moon, Y. Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation. Mediators Inflamm. 2014, 708193 (2014).
11 Moon, Y., Yang, H.Lee, S.H. Modulation of early growth response gene 1 and interleukin-8 expression by ribotoxin deoxynivalenol (vomitoxin) via ERK1/2 in human epithelial intestine 407 cells. Biochem. Biophys. Res. Commun. 362, 256-262 (2007).   DOI   ScienceOn
12 Park, S.H., Do, K.H., Choi, H.J., Kim, J., Kim, K.H., Park, J., Oh, C.G.Moon, Y. Novel regulatory action of ribosomal inactivation on epithelial Nod2-linked proinflammatory signals in two convergent ATF3-associated pathways. J. Immunol. 191, 5170-5181 (2013).   DOI
13 Goyarts, T., Danicke, S., Tiemann, U.Rothkotter, H.J. Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes. Toxicol. In Vitro. 20, 858-867 (2006).   DOI
14 Pestka, J.J., Moorman, M.A.Warner, R.L. Dysregulation of IgA production and IgA nephropathy induced by the trichothecene vomitoxin. Food Chem. Toxicol. 27, 361-368 (1989).   DOI
15 Flannery, B.M., Wu, W.Pestka, J.J. Characterization of deoxynivalenol- induced anorexia using mouse bioassay. Food Chem. Toxicol. 49, 1863-1869 (2011).   DOI
16 Wu, W., Flannery, B.M., Sugita-Konishi, Y., Watanabe, M., Zhang, H.Pestka, J.J. Comparison of murine anorectic responses to the 8-ketotrichothecenes 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, fusarenon X and nivalenol. Food Chem. Toxicol. 50, 2056-2061 (2012).   DOI
17 Girardet, C., Bonnet, M.S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Roux, J., Lebrun, B., Mounien, L., Trouslard, J., Jean, A., Dallaporta, M.Troadec, J.D. Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: a PGE2-independent mechanism. Toxicol. Sci. 124, 179-191 (2011).   DOI   ScienceOn
18 Prelusky, D.B. The effect of low-level deoxynivalenol on neurotransmitter levels measured in pig cerebral spinal fluid. J. Environ. Sci. Health B. 28, 731-761 (1993).   DOI
19 Awad, W.A., Bohm, J., Razzazi-Fazeli, E., Ghareeb, K. Zentek, J. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult. Sci. 85, 974-979 (2006).   DOI
20 Turner, P.C., Ji, B.T., Shu, X.O., Zheng, W., Chow, W.H., Gao, Y.T.Hardie, L.J. A biomarker survey of urinary deoxynivalenol in China: the Shanghai Women's Health Study. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 28, 1220-1223 (2011).   DOI
21 Awad, W.A., Ghareeb, K., Bohm, J.Zentek, J. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food. Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 27, 510-520 (2010).   DOI
22 Schatzmayr, G., Zehner, F., Taubel, M., Schatzmayr, D., Klimitsch, A., Loibner, A.P.Binder, E.M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 50, 543-551 (2006).   DOI   ScienceOn
23 Awad, W.A., Bohm, J., Razzazi-Fazeli, E., Hulan, H.W. Zentek, J. Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. Poult. Sci. 83, 1964-1972 (2004).   DOI
24 Berthiller, F., Krska, R., Domig, K.J., Kneifel, W., Juge, N., Schuhmacher, R.Adam, G. Hydrolytic fate of deoxynivalenol- 3-glucoside during digestion. Toxicol. Lett. 206, 264-267 (2011).   DOI
25 Hattori, M.Taylor, T.D. The human intestinal microbiome: a new frontier of human biology. DNA Res. 16, 1-12 (2009).   DOI   ScienceOn
26 Maul, R., Warth, B., Kant, J.S., Schebb, N.H., Krska, R., Koch, M.Sulyok, M. Investigation of the hepatic glucuronidation pattern of the Fusarium mycotoxin deoxynivalenol in various species. Chem. Res. Toxicol. 25, 2715-2717 (2012).   DOI
27 Uhlig, S., Ivanova, L.Faeste, C.K. Enzyme-assisted synthesis and structural characterization of the 3-, 8-, and 15-glucuronides of deoxynivalenol. J. Agric. Food Chem. 61, 2006- 2012 (2013).   DOI
28 Kim, E.J., Jeong, S.H., Cho, J.H., Ku, H.O., Pyo, H.M., Kang, H.G.Choi, K.H. Plasma haptoglobin and immunoglobulins as diagnostic indicators of deoxynivalenol intoxication. J. Vet. Sci. 9, 257-266 (2008).   DOI   ScienceOn
29 Mikami, O., Kubo, M., Murata, H., Muneta, Y., Nakajima, Y., Miyazaki, S., Tanimura, N.Katsuda, K. The effects of acute exposure to deoxynivalenol on some inflammatory parameters in miniature pigs. J. Vet. Med. Sci. 73, 665-671 (2011).   DOI
30 Gratz, S.W., Duncan, G.Richardson, A.J. The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3- glucoside and may be responsible for urinary deepoxy-deoxynivalenol. Appl. Environ. Microbiol. 79, 1821-1825 (2013).   DOI   ScienceOn
31 Prelusky, D.B., Veira, D.M., Trenholm, H.L.Foster, B.C. Metabolic fate and elimination in milk, urine and bile of deoxynivalenol following administration to lactating sheep. J. Environ. Sci. Health B. 22, 125-148 (1987).   DOI
32 Swanson, S.P., Dahlem, A.M., Rood, H.D., Jr., Cote, L.M., Buck, W.B.Yoshizawa, T. Gas chromatographic analysis of milk for deoxynivalenol and its metabolite DOM-1. J. Assoc. Off. Anal. Chem. 69, 41-43 (1986).
33 Berthiller, F., Dall'asta, C., Corradini, R., Marchelli, R., Sulyok, M., Krska, R., Adam, G.Schuhmacher, R. Occurrence of deoxynivalenol and its 3-beta-D-glucoside in wheat and maize. Food. Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 26, 507-511 (2009).   DOI
34 Nagl, V., Schwartz, H., Krska, R., Moll, W.D., Knasmuller, S., Ritzmann, M., Adam, G.Berthiller, F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicol. Lett. 213, 367-373 (2012).   DOI
35 Lattanzio, V.M., Solfrizzo, M., De Girolamo, A., Chulze, S.N., Torres, A.M.Visconti, A. LC-MS/MS characterization of the urinary excretion profile of the mycotoxin deoxynivalenol in human and rat. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 707-715 (2011).   DOI
36 Meky, F.A., Turner, P.C., Ashcroft, A.E., Miller, J.D., Qiao, Y.L., Roth, M.J.Wild, C.P. Development of a urinary biomarker of human exposure to deoxynivalenol. Food Chem. Toxicol. 41, 265-273 (2003).   DOI
37 Turner, P.C., Burley, V.J., Rothwell, J.A., White, K.L., Cade, J.E.Wild, C.P. Deoxynivalenol: rationale for development and application of a urinary biomarker. Food. Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25, 864-871 (2008).   DOI   ScienceOn
38 Turner, P.C., Burley, V.J., Rothwell, J.A., White, K.L., Cade, J.E.Wild, C.P. Dietary wheat reduction decreases the level of urinary deoxynivalenol in UK adults. J. Expo. Sci. Environ. Epidemiol. 18, 392-399 (2008).   DOI
39 Turner, P.C., Taylor, E.F., White, K.L., Cade, J.E.Wild, C.P. A comparison of 24 h urinary deoxynivalenol with recent v. average cereal consumption for UK adults. Br. J. Nutr. 102, 1276-1279 (2009).   DOI
40 Miller, J.D. Aspects of the ecology of Fusarium toxins in cereals. Adv. Exp. Med. Biol. 504, 19-27 (2002).   DOI
41 Miller, J.D. Mycotoxins in small grains and maize: old problems, new challenges. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25, 219-230 (2008).   DOI   ScienceOn
42 Pieters, M.N., Bakker, M. Slob, W. Reduced intake of deoxynivalenol in The Netherlands: a risk assessment update. Toxicol. Lett. 153, 145-153 (2004).   DOI   ScienceOn
43 Pestka, J.J., Islam, Z.Amuzie, C.J. Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse. Toxicol. Lett. 178, 83-87 (2008).   DOI
44 Fiocchi, C. Towards a 'cure' for IBD. Dig. Dis. 30, 428-433 (2012).   DOI
45 Huh, D., Kim, H.J., Fraser, J.P., Shea, D.E., Khan, M., Bahinski, A., Hamilton, G.A.Ingber, D.E. Microfabrication of human organs-on-chips. Nat. Protoc. 8, 2135-2157 (2013).   DOI
46 Diesing, A.K., Nossol, C., Danicke, S., Walk, N., Post, A., Kahlert, S., Rothkotter, H.J.Kluess, J. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One. 6, e17472 (2011).   DOI   ScienceOn
47 Prelusky, D.B. The effect of deoxynivalenol on serotoninergic neurotransmitter levels in pig blood. J Environ Sci Health B. 29, 1203-1218 (1994).   DOI
48 Warth, B., Sulyok, M., Fruhmann, P., Berthiller, F., Schuhmacher, R., Hametner, C., Adam, G., Frohlich, J.Krska, R. Assessment of human deoxynivalenol exposure using an LCMS/ MS based biomarker method. Toxicol. Lett. 211, 85-90 (2012).   DOI