• Title/Summary/Keyword: flying object

Search Result 53, Processing Time 0.024 seconds

Path Planning of a Free Flying Object and its Application for Gymnastic Robots

  • Nam Taek-Kun;Kim Yong-Joo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.63-69
    • /
    • 2005
  • The motion of animals and gymnasts in the air as well as free flying space robots without thrusters are subjected to nonholonomic constraints generated by the law of conservation of angular momentum. The purpose of this paper is to derive analytical posture control laws for free flying objects in the air. We propose the bang-bang control method for trajectory planning of a 3 link mechanical system with initial angular momentum. This technique is used to reduce the DOF (degrees of freedom) at first switching phase and to determine the control inputs to steer the reduced order system to the desired position. Computer simulations for motion planning of an athlete approximated by 3 link, namely platform diving, are provided to verify the effectiveness of the proposed control scheme.

Aerodynamic analysis of disc type flying-object and flying-wing (원반형 비행체와 전익기의 공력특성 분석)

  • Lee, Yeong-Jun;An, Hyeon-Jin;Kim, Byeong-Su
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.550-555
    • /
    • 2014
  • 전익기는 전쟁 중 등장해 활약했다는 점과 그 독특한 형태로 유명세를 타기 시작한 비행체의 한 종류이다. 공기역학적으로 동일한 속도로 비행할 때 일반적인 항공기와 비교해서 적은 동력으로 더 멀리 날수 있는 전익기의 특성과 그 발전방향을 보았을 때 동체의 익면적이 넓어 생기는 특성을 극대화 시키면서 더욱 독특한 형태의 비행체로 나타나는 모습이 원반형 비행체이다. 본 연구는 EDISON Simulation을 활용한 두 비행체의 공력특성 비교를 통해 실제로 원반형 비행체가 많이 쓰이지 않는 이유와 그 장단점에 대한 데이터를 확보했으며 특히 원반형 비행체의 경우 Cockpit 유무와 그 크기에 따라 실속각이 커지는 것을 확인하였다.

  • PDF

A path planning of free flying object and its application to the control of gymnastic robot

  • Nam, Taek-Kun;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.526-534
    • /
    • 2003
  • Motions of animals and gymnasts in the air as well as free flying space robots without thruster are subject to nonholonomic constraints generated by the law of conservation of angular momentum. The interest in nonholonomic control problems is motivated by the fact that such systems can not stabilized to its equilibrium points by the smooth control input. The purpose of this paper is to derive analytical posture control laws for free flying objects in the air. We propose a control method using bang-bang control for trajectory planning of a 3 link mechanical system with initial angular momentum. We reduce the DOF (degrees of freedom) of control object in the first control phase and determine the control inputs to steer the reduced order system from its initial position to its desired position. Computer simulation for a motion planning of an athlete approximated by 3 link is presented to illustrate the effectiveness of the Proposed control scheme.

Lubrication Performance Analysis of a Spiral Groove Dry Gas Seal for a High-Speed Flying Object (고속비행체용 스파이럴 그루브 드라이 가스 시일의 윤활 성능해석)

  • Lee An Sung;Kim Jun Ho
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • In this study a general Galerkin FE lubrication analysis method is utilized to analyze the complex lubrication performance of a spiral groove seal, which is being designed and developed for a high-speed flying object application operating at a high-speed of over 50,000 rpm. As at the equilibrium seal clearance the axial stiffness of the seal is predicted to have almost such a constant high value of $1.04\times10^8\;N/m$ regardless of a rotating speed, the seal is expected to maintain a stable thickness of lubrication film under a certain external excitation acting. Also, as even at an ultra high-speed of 80,000 rpm the axial damping of the seal is shown to have a rotatively high value of 5,775 N-s/m, the dynamic stability of the seal system at the axial degree of freedom is assured well enough.

Design Optimization of the Air Bearing Surface for the Optical Flying Bead (Optical Flying Head의 Air Bearing Surface 형상 최적 설계)

  • Lee Jongsoo;Kim Jiwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.303-310
    • /
    • 2005
  • The systems with probe and SIL(Solid Immersion Lens) mechanisms have been researched as the technology to perform NFR(Near Field Recording). Most of them use the flying head mechanism to accomplish high recording density and fast data transfer rate. In this paper, ABS shape of flying head was optimized with the object of securing the maximum compliance ability of OFH. We suggest low different optimization processes to predict the static flying characteristics for the OFH. Two different approximation methods, regression analysis and back propagation neural network were used. And we compared the result of directly connected(between CAE and optimizer) method and two approximated optimization results. Design Optimization Tool(DOT) and ${\mu}GA$ were used as the optimizers.

Estimation of the Aerodynamics of UFO-Type Aircraft as a Future VTOL Aircraft (미래 수직이착륙 항공기로서의 UFO형 항공기 공기역학 추정)

  • Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • Flying Saucer(flying disk type UFO) is a rotating disk that flies through the air. Thus, the aerodynamical features of the Flying Saucer can be estimated by taking a close look on the aerodynamics of the rotating disk. In the present paper, the aerodynamics of the rotating disk are reviewed focusing on the their application to the possibility of the UFO type VTOL aircraft. Finally, a combination of Avro Aircraft and Frisbee concepts is suggested as a possible new UFO type VTOL aircraft.

The study on physical factors related with emotional reaction on the flying path (나는(flying) 궤적(path)에 있어서 감성반응을 일으키는 물리적 속성(요소)에 대한 연구)

  • Kim, Do-Yun;Jeong, Jea-Wook
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.139-146
    • /
    • 2005
  • Animation works have been peformed by the objective sensitivity and experience so far. Software designs have been also manufactured based on intelligent data because they are easy to objectify and digitalize. In contrast, there are many elements, which human senses are hard to objectify and digitalize. This study investigates how to digitalize and objectify human senses and how to use them as the quantitative data and its subject is a flying path. In the experiment, this study collects some sensitive words for how human beings express the living path. The evaluation words for sensitivity through the collected sensitive words are extracted and the sketch images for the flying path are collected from the extracted evaluation words for sensitivity. Based on the collected sketch images, the samples of real moving image, which are the core of this study, are manufactured. Then, quantification theory III and I are used in order to analyze the correlation between the sensitive words representing the flying path and the samples of moving image. As a result, this study can figure out the structure of sensitive words and the samples of moving image and analyze the physical stimulating elements for the flying path. The flying path corresponds to the path that the object has passed. Some unique sensitive words are expressed by means of interacting some sensitive stimulating elements after looking at such a path. There are some elements that stimulate the senses and they include the physical elements such as speed, rotation, pattern and length of arc. The purpose of this study is to objectify and quantify the animation works that are created by animators' subjective thought and experience and to use them in animation works in the future.

  • PDF

Flying Cake: An Augmented Game on Mobile Device (Flying Cake: 모바일 단말기를 이용한 실감형 게임)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.79-94
    • /
    • 2007
  • In the ubiquitous computing age which uses a high quantity network, mobile devices such as wearable and hand-held ones with a small tamers and a wireless communication module will be widely used in near future. Thus, a lot of researches about an augmented game on mobile devices have been attempted recently. The existing augmented games used a traditional 'backpack' system and a pattern marker. The 'backpack' system is expensive, cumbersome and inconvenient to use, and because of the pattern marker, it is only possible to play the game in the previously installed palace. In this paper, we propose an augmented game called Flying Cake using a face region to create the virtual object(character) without the pattern marker, which manually indicates an overlapped location of the virtual object in the real world, on a small and mobile PDA instead of the cumbersome hardware. Flying Cake is an augmented shooting game. This game supplies us with two types: 1) a single player which attacks a virtual character on images captured by a camera in an outdoor physical area, 2) dual players which attack the virtual character on images which we received through a wireless LAN. We overlap the virtual character on the face region using a face detection technique, and users play Flying Cake though attacking the virtual character. Flying Cake supplies new pleasure to flayers with a new game paradigm through an interaction between the user in the physical world captured by the PDA camera and the virtual character in a virtual world using the face detection.

Optimal design of slider for stable flying characteristic using 4${\times}$l near-field probe array

  • Jung Min-su;Hong Eo-Jin;Park Kyoung-Su;Park No-Cheol;Yang Hyun-Seok;Park Young-Pil;Lee Sung-Q;Park Kang-Ho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.171-176
    • /
    • 2005
  • In the information storage development, the trend of the storage device is to increase the recording density. Among such an effort, near-field probe recording is spotlighted as a method of high increasing recording density. For the successfully embodiment of storage device, the actuating mechanism of near-field probe is essentially designed. In this paper, we suggest the slider similar with conventional HDDs and design the slider using near- field probe for the purpose of applying the slider in order to control gap between probe and media. The most important object of slider design is to guarantee the flying ability and stability. For achievement of these design objects, we perform two step of optimal design process. The media is mod! eled as random displacement, which is only considered roughness of disk surface. The design slider is analyzed with dynamic state in assumed media. At this process, the optimal model is confirmed to stable flying stability.

  • PDF