• Title/Summary/Keyword: flux-lock type SFCL

Search Result 96, Processing Time 0.023 seconds

Comparison of Fault Current Limiting Characteristics between the separated Three-phase Flux-lock Type SFCL and the Integrated Three-phase Flux-lock Type SFCL (분리된 삼상 자속구속형 전류제한기와 일체화된 삼상 자속구속형 전류제한기의 전류제한 특성 비교)

  • Doo, Seung-Gyu;Du, Ho-Ik;Kim, Min-Ju;Park, Chung-Ryul;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.689-693
    • /
    • 2009
  • We investigate the comparison of fault current characteristics between the separates three-phase flux-lock type superconducting fault current limiter(SFCL) and integrated three-phase flux-lock type superconducting fault current limiter(SFCL). The single-phase flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil on an iron core and superconducting elements are connected to secondary coil in series. Superconducting elements are used by the YBCO coated conductor. The separated three-phase flux-lock type SFCL consists of single-phase flux-phase type SFCL in each phase. But the integrated three-phase flux-lock type SFCL consists of three-phase flux-reactors wound on an iron core. Flux-reactor consists of the same turn's ratio between coil 1 and coil 2 for each single phase. To compare the current limiting characteristics of the separated three-phase flux-lock type SFCL and integrated three-phase flux-lock type SFCL, the short circuit experiments are carried out fault condition such as the single line-to-ground fault. The experimental result shows that fault current limiting characteristic of the separated three-phase flux-lock type SFCL was better than integrated three-phase flux-lock type SFCL. And the integrated three-phase flux-lock type SFCL has an effect on sound phase.

Fault Current Limiting Characteristics of Separated and Integrated Three-Phase Flux-Lock Type SFCLs

  • Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.289-293
    • /
    • 2007
  • The fault current limiting characteristics of the separated and the integrated three-phase flux-lock type superconducting fault current limiters (SFCLs) were analyzed. The three-phase flux-lock type SFCL consisted of three flux-lock reactors and three $high-T_c$ superconducting (HTSC) elements. In the integrated three-phase flux-lock type SFCL, three flux-lock reactors are connected on the same iron core. On the other hand, three flux-lock reactors of the separated three-phase flux-lock type SFCL are connected on three separated iron cores. The integrated three-phase flux-lock type SFCL showed the different fault current limiting characteristics from the separated three-phase flux-lock type SFCL that the fault phase could affect the sound phase, which resulted in quench of the HTSC element in the sound phase. Through the computer simulation applying numerical analysis for its three-phase equivalent circuit, the fault current limiting characteristics of the separated and the integrated three-phase flux-lock type SFCLs according to the ground fault types were compared.

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit (자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Go, Ju-Chan;Lim, Seung-Taek;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

Current Limiting and Voltage Sag Suppressing Characteristics of Flux-lock Type SFCL According to Variations of Turn Number's Ratio (자속구속형 초전도전류제한기의 권선비 변화에 따른 전류제한 및 전압강하 보상 특성)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.410-415
    • /
    • 2011
  • In this paper, we investigated the fault current limiting and the load voltage sag suppressing characteristics of the flux-lock type SFCL, designed with the additive polarity winding, according to the variations of turn number's ratio and the comparative analysis between the resistive type and the flux-lock type SFCLs were performed as well. From the analysis for the short-circuit tests, the flux-lock type SFCL designed with the larger turn number's ratio was shown to perform more effective fault current limiting and load voltage sag suppressing operations compared to the flux-lock type SFCL designed with the lower turn number's ratio through the fast quench occurrence of the high-$T_C$ superconducting (HTSC) element comprising the flux-lock type SFCL. In addition, the recovery time of the flux-lock type SFCL after the fault removed could be confirmed to be shorter in case of the flux-lock type SFCL designed with the lower turn number ratio.

Analysis on Current Limiting Characteristics of a Fault-lock Type SFCL Applied into a Simulated Power System (모의전력계통에 적용된 자속구속형 초전도 전류제한기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • When the current of the superconducting element exceeds its critical current by the fault occurrence, the quench of the high-$T_C$ superconducting fault current limiter (HTSC) comprising the flux-lock type superconducting fault current limiter (SFCL) occurs. Simultaneously, the magnetic flux in the iron core induces the voltage in each coil, which contributes to limit the fault current. In this paper, the fault current limiting characteristics of the flux-lock type SFCL as well as the load voltage sag suppressing characteristics according to the flux-lock type SFCL's winding direction were investigated. To confirm the fault current limiting and the voltage sag suppressing characteristics of the this SFCL, the short-circuit tests for the simulated power system with the flux-lock type SFCL were carried out. The flux-lock type SFCL designed with the additive polarity winding was shown to perform more effective fault current limiting and load voltage sag suppressing operations through the fast quench occurrence right after the fault occurs and the fast recovery operation after the fault removes than the flux-lock type SFCL designed with the subtractive polarity winding.

Hysteresis Characteristics of Flux-Lock Type Superconducting Fault Current Limiter (자속구속형 고온초전도 사고전류제한기의 히스테리시스 특성)

  • Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.66-70
    • /
    • 2007
  • For the design to prevent the saturation of the iron core and the effective fault current limitation, the analysis for the operation of the flux-lock type superconducting fault current limiter (SFCL) with consideration for the hysteresis characteristics of the iron core is required. In this paper, the hysteresis characteristics of the flux-lock reactor, which is an essential component of the flux-lock type SFCL, were investigated. Under normal condition, the hysteresis loss of the iron core in the flux-lock type SFCL does not happen due to its winding structure. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. From the analysis for both the hysteresis curves and the fault current limiting characteristics due to the number of turns for the 1st and 2nd windings, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

Comparative Study of Current Limiting Characteristics for Hybrid Type and Flux-Lock Type SFCLs

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.222-225
    • /
    • 2007
  • In this paper, we compared the current limiting characteristics of both the hybrid type and the flux-lock type superconducting fault current limiters(SFCLs), which have a magnetic coupling structure between a primary winding and several secondary windings. The limiting impedances of two SFCLs were derived from each equivalent circuit considering the design parameters of SFCL such as the self-inductance of secondary winding and the resistance of $high-T_C$ superconducting(HTSC) element. Through the comparison for the limiting impedances of two SFCLs considering the dependence of the HTSC element's resistance on the applying voltage into the SFCL, the hybrid type SFCL was confirmed to have larger limiting impedance with smaller resistance of HTSC element than the flux-lock type SFCL. It was expected from the analysis that the hybrid type SFCL was more advantageous than the flux-lock type SFCL from the viewpoint of the fault current limiting level.

Characteristics of Flux-Lock Type Superconducting Fault Current Limiter Using Third Winding (3차 권선을 이용한 자속구속형 사고전류제한기의 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Park, Chung-Ryul;Lim, Sung-Hun;Cho, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.87-89
    • /
    • 2005
  • In this paper, we analyzed that characteristics of flux-lock type superconducting fault current limiter (SFCL) using the third winding to fault current limiting. The flux-lock type SFCL using the third winding consists of the first and seconding windings which are wound in parallel each other a iron core. Also it connected inductively the third winding connected resistance of series. Because of the hysteresis according to the increased voltage, the distortion of current in the flux-lock type SFCL occurs. It is a disadvantage to increase the capacity of SFCL. We conformed that the third winding of the flux-lock type SFCL prevented the distortion of current. Also, the third winding did not affect the initial fault current of the flux-lock type SFCL.

  • PDF

Analysis on Current Limiting Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.136-140
    • /
    • 2011
  • The fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) using a transformer winding were investigated. The suggested flux-lock type SFCL consists of two parallel connected coils on an iron core and the transformer winding connected in series with one of two coils. In this SFCL, the high-TC superconducting (HTSC) element was connected with the secondary side of the transformer. The short-circuit experimental devices to analyze the fault current limiting characteristics of the flux-lock type SFCL using the transformer winding were constructed. Through the short-circuit tests, the flux-lock type SFCL using transformer winding was shown to perform more effective fault current limiting operation compared to the previous flux-lock type SFCL without the transformer winding from the viewpoint of the quench occurrence and the recovery time of the HTSC element.

Analysis of Operational Characteristics of Separated Three-Phase Flux-Lock SFCL (삼상 분리형 자속구속형 전류제한기의 동작 특성 분석)

  • Doo, Seung-Gyu;Du, Ho-Ik;Park, Chung-Ryul;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.289-289
    • /
    • 2008
  • We investigated the operational characteristics of the separated three-phase flux-lock type superconducting fault current limiter (SFCL). The single-phase lock type SFCL consist of two coils, which are wound in parallel through an iron core. The high-$T_c$ superconducting(HSTC) thin film connected in series with secondary coil. The separated three-phase flux-lock type SFCL consist of three single-phase flux-lock type SFCL. In a normal condition, the SFCL is not operate. When a fault occurs, the current of a HSTC thin film exceeds its critical current by fault current, the resistance of the HSTC thin film generated. Therefore fault current was limited by SFCL. The separated three-phase flux-lock type SFCL are operated in fault condition such as the the single line-to-ground fault, the double line-to-ground fault and the triple line-to-ground fault. The experimental results, the SFCL operational characteristics was dependent on fault condition.

  • PDF