• Title/Summary/Keyword: flux transfer method

Search Result 271, Processing Time 0.029 seconds

Effects of Cutting Angle on Kerf width and Edge Shape in the Hotwire Cutting of EPS Foam for the Case of Single-Sloped Cutting for VLM-s Process (VLM-s 공정을 위한 EPS 폼의 단순 경사 열선 절단시 절단 경사각이 절단폭과 모서리 형상에 미치는 영향)

  • 안동규;양동열
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.525-533
    • /
    • 2003
  • The dimensional accuracy and global roughness between successive layers of VLM-s, which is a new rapid prototyping process using hotwire cutter and EPS foam, depend significantly on the operating parameters of hotwire cutter. In the present study, the effect of cutting angle on the kerf width and edge shape in hotwire cutting of EPS foam for the case of single-sloped cutting with one cutting angle was investigated. Through single-sloped cutting tests, the modified relationship between kerf width and effective heat input, considering the effect of the cutting angle, and the relationship between the melted area and the cutting angle were obtained. In order to investigate the effect of cutting angles on the thermal field in EPS foam, transient heat transfer analyses using single-sloped volumetric heat flux model and locally-conformed mesh were performed. Through the comparison between experimental and numerical results, it was shown that the proposed analysis model is needed to estimate the three-dimensional temperature distribution of the EPS foam for the case of single-sloped hotwire cutting.

The basic research of transcutaneous energy transmission system for totally implantable artificial heart (체내 이식형 인공심장의 무선에너지 전송 시스템에 관한 기초적 연구)

  • Kim, J.H.;Kim, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.407-410
    • /
    • 2002
  • As a part of electro-mechanical totally implantable artificial heart, a transcutaneous energy transmission system has been developed. By mutual magnetic induction between the first coil on the skin and the subcutaneously implanted second coil, the system transfers electrical power through the skin. This research aimed a minimizing the size of the implanted part as well as maximizing the transfer efficiency. When an air gap is 1$\sim$2cm, voltage gain and current gain low and it is hard to transfer energy due to large leakage flux. That is, the required input voltage and input current must be large compared with the output voltage and output current, respectively, This paper research the inverter topology and the control method in order to increase the voltage gain and the current gain. For this purpose, this inverter employs double tune to compensate the large leakage inductance of primary and secondary of the transcutaneous transformer. And the output energy of transcutaneous energy transmission system supply for Lithium-ion battery charger.

  • PDF

A Study On the Radiation Corrections Applied to Thermocouple Measurements in Non-premixed Counterflow Flames (비예혼합 역류화염에서 열전대 측정을 적용하기 위한 복사보정에 관한 연구)

  • 오율권;허준영;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2002
  • The temperature field of a counterflow non-premixed flame is investigated using thermocouples of two sizes. A thermal balance is performed on the thermocouple in order to calculate the magnitude of the radiation corrections involved. Both the thermocouple wire and bead are separately considered to be the relevant thermal surface to which convective heat transfer takes place, and from which radiation lasses occur. The flame is also simulated by using a detailed chemical kinetic mechanism in a previously developed computer code. The local thermo-physical properties of the gas mixture, required to calculate the corrections, are determined both from the simulation, and by approximating the properties of the mixture as those of molecular nitrogen at the measured temperatures. It is concluded that the thermocouple wire is the appropriate thermal surface to which radiation corrections apply, in the absence of information about the gas mixture, its properties can be reasonably approximated by those of nitrogen rm ($N_2$), and the radiation corrections are very sensitive to misalignments in the temperature and velocity fields.

Analysis of Conjugated Heat Transfer for the Diffuser Exposed to Hot Combustion Gas (고온 연소가스에 노출되는 디퓨저의 복합 열전달량 계산)

  • Jin, Sang-Wook;Na, Jae-Jung;Rhe, Sang-Ho;Lee, Kyu-Jun;Lim, Jin-Shik;Kim, Sung-Don
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.231-234
    • /
    • 2010
  • Analysis of conjugated heat transfer has been conducted for the diffuser exposed to hot combustion gas to design the mechanical durability in high temperature. All the heat transfer means, conduction, convection and radiation have been considered to calculate the total heat flux from hot gas to diffuser surface. The calculation has been implemented by two kinds of methods. One thing is one dimensional method based on empirical equations. The other is CFD(Computational Fluid Dynamics) axisymmetric calculation containing ${\kappa}-{\omega}$ SST(Shear Stress Transport) turbulent model and DO(Discrete Ordinate) radiation model. The derived results of two methods have compared and showed similar values. From this result, the amount of cooling water and the dimension of water cooling channel were decided.

  • PDF

Simplified Approximation Method of the Multi-Compartments Model on the Migration of Contaminant through Unsaturated Zone (불포화대에서 오염물질 이동현상에 대한 다중구획 모델의 단순 근사방법)

  • Cheong, Jae-Hak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • A conventional single compartment model cannot simulate reasonably the migration phenomenon of contaminants through unsaturated zone, due to the intrinsic unrealistic assumption of the compartment model that contaminants entering a compartment are immediately and uniformly mixed. Although, a multi-compartments model, in which even physically identical layer is divided into multiple compartments, may be used for explaining the retardation of contaminant mass flux along with increasing number of compartments, its numerical modeling is usually time-consuming and appropriate analytical solutions have not been reported yet. In order to improve the conventional compartment models on contaminant migration through unsaturated zone, a series of analytical solutions for multi-compartments model were derived and a generalized constraint under which the results from multi-compartments model can be simply approximated by single compartment model was proposed. The simplified approximation method was verified by a simple numerical analysis on the constraint under hypothetical conditions. It was also proved that the influent contaminant transfer rate from the bulk unsaturated zone can be generally represented into a time-dependent nominal transfer rate rather than a constant. In addition, the nominal transfer rate turned out to be very sensitive to the contaminant transfer rate between compartments in unsaturated zone, but to be almost insensitive to the transfer rate from contaminated zone. It is expected that the simplified approximation method developed in this study can be used for rapid and reasonable estimation of the migration phenomenon of contaminant through unsaturated zone, instead of time-consuming multi-compartments modeling.

  • PDF

Optimization of Separation Process of Bioflavonoids and Dietary Fibers from Tangerine Peels using Hollow Fiber Membrane (중공사 막을 이용한 감귤 과피 bioflavonoids 분리 및 식이 섬유 회수 공정 최적화)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.151-160
    • /
    • 1998
  • Tangerine peel is mostly discarded as waste in citrus processing. However, tangerine peel contains besides dietary fibers bioflavonoids such as naringin and hesperidin which act as antimicrobials and blood pressure depressants, respectively. A continuous membrane separation process was optimized for the production of bioflavonoids relative to feed flow rate, transmembrane pressure, temperature, and pH. The tangerine peel was blended with 7.5 times water volume and the extract was prefiltered through a prefiltration system. The prefiltered extract was ultrafiltered in a hollow fiber membrane system. The flux and feed flow rate didn't show any apparent correlation, but we could observe a mass-transfer controlled region of over 8 psi. When temperature increased from $9^{\circ}C\;to\;25^{\circ}C$, the flux increased about $10\;liters/m^2/min\;(LMH)$ but between $25^{\circ}C\;and\;33^{\circ}C$, the flux increased only 2 LMH. At every transmembrane pressure, the flux of pH 4.8 was the most highest and the flux at pH 3.0 was lower than that of pH 6.0, 7.0, or 9.0. Therefore, the optimum operating conditions were 49.3 L/hr. 10 psi, $25^{\circ}C$, and pH 4.8. Under the optimum conditions, the flux gradually decreased and finally reached a steady-state after 1 hr 50 min. The amount of dietary fibers in 1.0 g retentate in each separation step was analyzed and bioflavonoids concentration in each permeate was measured. The contents of total dietary fiber in the 170 mesh retentate and soluble dietary fiber in the prefiltered retentate were the highest. Naringin and hesperidin concentration in the permeate were $0.45{\sim}0.65\;mg/g\;and\;5.15{\sim}6.86\;mg/g$ respectively, being $15{\sim}22$ times and $79{\sim}93$ times higher than those in the tangerine peel. Therefore, it can be said that PM 10 hollow fiber membrane separation system may be a very effective method for the recovery of bioflavonoids from tangerine peel.

  • PDF

Development of Motorcycle Brake Design Aided Program for Thermal Analysis (모터사이클 브레이크의 열변형 해석을 위한 지원 프로그램의 개발)

  • 박시형;강석현;이성수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • Motorcycle industry, for its competitive position, depends on part design technology. This part design has a bulky amount of data and asks the accumulation of advanced technical skill and experience, and fragmentary technical application is not enough to get to the kernel of a problem. Therefore, the improvement of proper productivity - the starting point of engineering design - and useful Design Methodology for products manufacturing are needed. Thus this paper is aimed to create a program that outputs dynamic characteristics of a vehicle when the data from fully understanding on motorcycle's brake system and induced formula for brake design are inputted. This paper is intended to show a creative design method by the thermal analysis data through FEM study and using shape design parameters derived from our programs.

A Study on the microcooling Fin Fabrication Process for Enhancing Boiling Heat Transfer (비등열전달 향상을 위한 초소형 핀 제작공정에 관한 연구)

  • You, Sam-Sang;Lim, Tae-Woo;Jeong, Seok-Kwon;Park, Jong-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.3
    • /
    • pp.366-372
    • /
    • 2007
  • This paper presents the fabrication techniques of microcooling fins for microelectronics applications. The various types of cooling fins have been fabricated on the surface of a silicon wafer (4inch-N type) by using wet etching technique. The designed micro fins and micro channels are considered as an effective method for cooling microelectronics devices generating high heat flux. Further we extensively investigate the design processes fabricating micro fins and channels which can cool the heat generated from high density electronics devices.

A Study on the Subcooled Boiling Heat Transfer in a Horizontal Tube (수평관내 냉매의 과냉비등열전달에 관한 연구)

  • 김종헌;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 1994
  • A new reliable method to prediet the axial vapor fraction distribution from the measured probability density of the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled boiling flow is easily calculated from the liquid bulk temperature. When the heat generating rate is reached to the CHF value, the sharp wall temperature increasing by the wall temperature fluctuation is occurred under the CHF condition. This paper presents the simple wall temperature fluctuation model of transition boiling by the repeating process of overheating and quenching, when the coalescent bubble passes slowly near the wall. Experiments for the subcooled R-113 flow are carride-out in the range of(0.9399~4.461)${\times}10^6$kg/$m^2$hr mass velocity and 10~3$0^{\circ}C$ intel subcooling condition.

  • PDF

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface. (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.139-144
    • /
    • 2003
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the melt pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.

  • PDF