• Title/Summary/Keyword: flux quantum

Search Result 140, Processing Time 0.019 seconds

Simulation and Operation of DC/SFQ-JTL-SFQ/DC Circuit (DC/SFQ-JTL-SFQ/DC 회로의 시뮬레이션 및 작동)

  • 박종혁;정구락;임해용;강준희;한택상
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.17-20
    • /
    • 2002
  • A complex single flux quantum(SFQ) circuit could be made up of various elementary cells such as JTL(Josephson transmission line), Splitter, XOR, DC/SFQ, SFQ/DC, T flip-flop, ‥‥, etc. In this work, we have designed and simulated a SFQ circuit, which consists of DC/SFQ, JTL and SFQ/DC, based on Nb/AlO$_{x}$Nb Josephson junction technology From the simulation, we could obtain the margins for various circuit parameters. And also we have successfully operated the circuit, which was fabricated with the same design, up to the input signal frequency of about 20 GHz.z.

Simulation and Mask Drawing of Single Flux Quantum AND gate (단자속 양자 AND gate의 시뮬레이션과 Mask Drawing)

  • 정구락;임해용;박종혁;강준희;한택상
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.35-39
    • /
    • 2002
  • We have simulated and laid out a Single Flux Quantum(SFQ) AND gate for Arithmetic Logic Unit by using XIC, WRspice and Lmeter. SFQ AND gate circuit is a combination of two D Flip-Flop. D Flip-Flop and dc SQUID are the similar shape form the fact that it has the loop inductor and two Josephson junction We obtained perating margins and accomplished layout of the AND gate. We got the margin of $\pm$38%. over. After layout, we drew mask for fabrication of SFQ AND sate. This mask was included AND gate, dcsfq, sfqdc, rs flip-flop and jtl.

Numerical study of topological SQUIDs

  • Soohong, Choi;Yeongmin, Jang;Sara, Arif;Yong-Joo, Doh
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.11-15
    • /
    • 2022
  • We conducted numerical calculations to obtain the critical current as a function of the magnetic flux through the topologically trivial and non-trivial superconducting quantum interference devices (SQUIDs), with varying the capacitive and inductive couplings of Josephson junctions (JJs). Our calculation results indicate that a nontrivial SQUID is almost indistinguishable from trivial SQUID, considering the effective capacitance coupling. When the SQUID contains 2π- and 4π-periodic supercurrents, the periodicity of the current-flux relation can be distinguished from the purely trivial or nontrivial SQUID cases, and its difference is sensitive to the relative ratio between the topologically trivial and nontrivial supercurrents. We believe that our calculation results would provide a practical guide to quantitatively measure the portion of the topologically nontrivial supercurrents in experiments.

Design and Fabrication of High Temperature Superconducting Rapid Single Flux Quantum T Flip-Flop (고온 초전도 단자속 양자 T 플립 플롭 설계 및 제작)

  • Kim, J. H.;Kim, S. H.;Jung, K. R.;Kang, J. H.;Syng, G. Y.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.87-90
    • /
    • 2001
  • We designed a high temperature superconducting rapid single flux quantum(RSFQ) T flip-flop(TFF) circuit using Xic and WRspice. According to the optimized circuit parameters, we fabricated the TFF circuit with $Y_1$$Ba_2$Cu$_3$$O_{7-x}$(YBCO) interface-controlled Josephson junctions. The whole circuit was comprised of five epitaxial layers including YBCO ground plane. The interface-controlled Josephson junction was fabricated with natural junction barrier that was formed by interface-treatment process. In addition, we report second design for a new flip-flop without ground palne.e.

  • PDF

A Japanese National Project for Superconductor Network Devices

  • Hidaka, M.
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2003
  • A five-year project for Nb-based single flux quantum (SFQ) circuits supported by Japan's Ministry of Economy Trade and Industry (METI) in Japan was started in September 2002. Since April 2003, the New Energy and Industrial Technology Development Organization (NEDO) has supported this Superconductor Network Device Project. The aim of the project is to improve the integration level of Nb-based SFQ circuits to several ten thousand Josephson junctions, in comparison with their starting integration level of only a few thousand junctions. Actual targets are a 20 GHz dual processor module for the servers and a 0.96 Tbps switch module for the routers. Starting in April 2003, the Nb project was merged with SFQ circuit research using a high-T$_{c}$ superconductor (HTS). The HTS research targets are a wide-band AD converter for mobile-phone base stations and a sampling oscilloscope for wide-band waveform measurements.

  • PDF