• 제목/요약/키워드: flux quantum

검색결과 140건 처리시간 0.021초

Indium Interruption Growth법으로 성장한 InAs 양자점의 광학적 특성 (Optical Properties of InAs Quantum Dots Grown by Using Indium Interruption Growth Technique)

  • 이희종;류미이;김진수
    • 한국진공학회지
    • /
    • 제18권6호
    • /
    • pp.474-480
    • /
    • 2009
  • 분자선 에피택시 (molecular beam epitaxy: MBE)를 이용하여 GaAs (100) 기판에 Indium interruption growth법으로 성장한 InAs 양자점 (quantum dots: QDs)의 광학적 특성을 photoluminescence (PL)와 time-resolved PL (TRPL) 실험을 이용하여 분석하였다. In interruption growth법은 InAs 양자점 성장 동안 As 공급은 계속 유지하면서 셔터 (shutter)를 이용해 서 In 공급을 조절하는 방법이다. 본 연구에서는 In을 1초 동안 공급하고 셔터를 0초, 9초, 19초, 29초, 또는 39초 동안 닫아 In 공급을 차단하였으며, 공급과 차단 과정을 각 30회 반복하여 양자점을 성장하였다. In interruption 시간을 0초에서 19초까지 증가하였을 때 PL 피크는 1096 nm에서 1198 nm로 적색편이 (~100 nm)하고 PL 세기는 증가하였으나, 19초에서 39초까지 증가하였을 때 PL 스펙트럼의 변화는 없고 PL 세기는 감소하였다. 모든 양자점의 PL 소멸시간 (decay time)은 약 1 ns로 바닥상태 (ground state) PL 피크에서 가장 길게 나타났다. In interruption 시간이 19초인 시료가 가장 좋은 PL 특성과 가장 짧은 운반자 소멸시간을 나타내었다. PL 특성의 향상은 In interruption 시간동안 일정한 양의 In 원자들의 분리와 이동이 증가한 것으로 설명될 수 있다. 이러한 결과로부터 In interruption 법을 이용하여 InAs 양자점의 크기, 균일도, 조밀도 등을 조절하여 원하는 파장대의 양자점을 성장할 수 있음을 알 수 있다.

DC/SFQ 회로의 시뮬레이션 및 작동 (Simulation and Operation of DC/SFQ Circuit)

  • 박종혁;정구락;임해용;한택상;강준희
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.109-110
    • /
    • 2002
  • The purpose of a superconductive DC/SFQ circuit is to produce a controlled number of picosecond single flux quantum pulses at the output when a slowly changing DC current is applied to the input. In this work, we have designed and simulated a DC/SFQ circuit based on Nb/Al$O_{x}$/Nb Josephson junction technology. From the simulation, we could obtain the margins for various circuit parameters. And also we have successfully operated a DC/SFQ circuit which was fabricated with the same design. The margin for the input bias current of the circuit was observed to be of $\pm$60%, which was very close to the simulated value.

  • PDF

Measurement and Simulation Study of RSFQ OR gate

  • Nam, Doo-Woo;Jung, Ku-Rak;Hong, Hee-Song;Joonhee Kang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.44-47
    • /
    • 2003
  • There are several simulation programs in studying superconductor RSFQ (Rapid Single flux Quantum) electronic devices, which include WRspice, WinS, PSCAN, and JSIM. Even though different research groups use different simulation programs, it is not well known about which program gives the simulation results closer to the measurement values. In this work, we used both WRspice and WinS to simulate RSFQ OR gate and to compare the results from the different simulations. This comparison would help in deciding which program is better in the RSFQ circuit design. In the confluence buffer, which is the one of the main components of the DR gate, the measured bias margins were ${\times}23.2%$, while the margins from the simulations were ${\pm}35.56%$ from WRspice and it 53.1% from WinS. However, with the actual fabricated circuit parameters WRspice gave ${\pm}27%$. In WinS the circuit did not operate. We concluded that WRspice is more reliable.

RSFQ 1-bit ALU의 디자인과 시뮬레이션 (Design and Simulation of an RSFQ 1-bit ALU)

  • 김진영;백승헌;강준희
    • Progress in Superconductivity
    • /
    • 제5권1호
    • /
    • pp.21-25
    • /
    • 2003
  • We have designed and simulated an 1-bit ALU (Arithmetic Logic Unit) by using a half adder. An ALU is the part of a computer processor that carries out arithmetic and logic operations on the operands in computer instruction words. The designed ALU had limited operation functions of OR, AND, XOR, and ADD. It had a pipeline structure. We constructed an 1-bit ALU by using only one half adder and three control switches. We designed the control switches in two ways, dc switch and NDRO (Non Destructive Read Out) switch. We used dc switches because they were simple to use. NDRO pulse switches were used because they can be easily controlled by control signals of SET and RESET and show fast response time. The simulation results showed that designed circuits operate correctly and the circuit minimum margins were +/-27%. In this work, we used simulation tools of XIC and WRSPICE. The circuit layouts were also performed. The circuits are being fabricated.

  • PDF

고온초전도 다층박막 RSFQ 회로를 이용한 균형잡힌 비교기와 델타-시그마 모듈레이터 (Balanced Comparator and Delta-Sigma Modulator with High-Tc Multilayer RSFQ Logic Circuits)

  • 정연욱;김정구
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.48-53
    • /
    • 1999
  • We demonstrate small-scale high-T$_c$ superconductor RSFQ(Rapid Single Flux Quantum) circuits using multilayer bicrystal technology. An RSFQ balanced comparator is demonstrated with good current resolution, and its operating conditions are discussed in some detail. A single-loop delta-sigma modulator is realized adding a feedback loop to the comparator. The effect of the feedback is confirmed by dc measurement and simulation. A design of an RSFQ toggle flip-flop with the same multilayer bicrystal technology is suggested.

  • PDF

RSFQ Toggle Flip-Flop 회로의 최적화를 통한 Program Counter의 개발 (Development of Program counter through the optimization of RSFQ Toggle Flip-Flop)

  • 백승헌;김진영;김세훈;강준희
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권1호
    • /
    • pp.17-20
    • /
    • 2005
  • We has designed, fabricated, and measured a Single flux quantum (SFQ) toggle flip-flop (TFF). The TFF is widely used in superconductive digital electronics circuits. Many digital devices, such as frequency counter, counting ADC and program counter be used TFF Specially, a program counter may be constructed based on TFF We have designed the newly TFF and obtained high bias margins on test. In this work, we used two circuit simulation tools, WRspice and Julia, as circuit optimization tools. We used XIC for a layout tool. Newly designed TFF had minimum bias margins of +/- $37\%$ and maximum bias margins of +/-$37\%$(enhanced from +/- $37\%$). The designed circuits were fabricated by using Nb technology The test results showed that the re-optimized TFF operated correctly on 100kHz and had a very wide bias margins of +/- $53\%$.

RSFQ OR-gates의 전산모사 실험 및 Nb 공정에 적합한 설계 연구 (Simulation Study of RSFQ OR-gates and Their Layouts for Nb Process)

  • 남두우;홍희송;강준희
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.37-41
    • /
    • 2002
  • In this work. we have designed two different kinds of Rapid Single Flux Quantum (RSFQ) OR-gates. One was based on the already developed RSFQ cells and the other was aimed to develop a more compact version. In the first circuit, we used a combination of two D Flip-Flops and a merger and in the other circuit we used a combination of RS Flip-Flops and Confluence Buffer. We tested the circuit performance by using the simulation tools, Xic and Wrspice. We obtained the operation margins of the circuit elements by a margin calculation program, and we obtained the minimum operation margins of $\pm$30%. The circuits were laid out, aimed to fabricate by using the existing KRISS Nb process. KRISS Nb process includes the $Nb/Al_2$$O_3$/Nb trilayer fabricated by DC magnetron sputtering and the reactive ion etching technique for the definition of the features. The major tools used in the layouts were Xic and L-meter.

  • PDF

RSFQ 논리회로의 개발과 회로설계에 대한 지연시간 고려 (Development of RSFQ Logic Circuits and Delay Time Considerations in Circuit Design)

  • 강준희;김진영
    • Progress in Superconductivity
    • /
    • 제9권2호
    • /
    • pp.157-161
    • /
    • 2008
  • Due to high speed operations and ultra low power consumptions RSFQ logic circuit is a very good candidate for future electronic device. The focus of the RSFQ circuit development has been on the advancement of analog-to-digital converters and microprocessors. Recent works on RSFQ ALU development showed the successful operation of an 1-bit block of ALU at 40 GHz. Recently, the study of an RSFQ analog-to-digital converter has been extended to the development of a single chip RF digital receiver. Compared to the voltage logic circuits, RSFQ circuits operate based on the pulse logic. This naturally leads the circuit structure of RSFQ circuit to be pipelined. Delay time on each pipelined stage determines the ultimate operating speed of the circuit. In simulations, a two junction Josephson transmission line's delay time was about 10 ps, a splitter's 14.5 ps, a switch's 13 ps, a half adder's 67 ps. Optimization of the 4-bit ALU circuit has been made with delay time consideration to operate comfortably at 10 GHz or above.

  • PDF

단자속 양자 1-bit ALU의 5 ㎓ 측정 (5 ㎓ test of a SFQ 1-bit ALU)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.117-119
    • /
    • 2003
  • We have designed fabricated, and tested an RSFQ(Rapid Single Flux Quantum) 1-bit ALU (Arithmetic Logic Unit). The 1-bit ALU was composed of a half adder and three SFQ DC switches. Three DC switches were attached to the two output ports of an ALU for the selection of each function from the available functions that were AND, OR, XOR and ADD. And we also attached two DC switches at the input ports of the half adder so that the input data were controlled using the function generators operating at low speed while we tested the circuit at high speed. The test bandwidth was from 1KHz to 5 ㎓. The chip was tested at the liquid helium temperature of 4.2 K.

  • PDF

단자속 양자 NDRO 회로의 설계와 측정 (Design and Measurements of an RSFQ NDRO circuit)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.76-78
    • /
    • 2003
  • We have designed and tested an RSFQ (Rapid Single Flux Quantum) NDRO (Non Destructive Read Out) circuit for the development of a high speed superconducting ALU (Arithmetic Logic Unit). When designing the NDRO circuit, we used Julia, XIC and Lmeter for the circuit simulations and layouts. We obtained the simulation margins of larger than $\pm$25%. For the tests of NDRO operations, we attached the three DC/SFQ circuits and two SFQ/DC circuits to the NDRO circuit. In tests, we used an input frequency of 1 KHz to generate SFQ Pulses from DC/SFQ circuit. We measured the operation bias margin of NDRO to be $\pm$15%. The circuit was measured at the liquid helium temperature.

  • PDF