• 제목/요약/키워드: flue gas separation

Search Result 33, Processing Time 0.029 seconds

Study on the Separation of CO2 from Flue Gas Using Polysulfone Hollow Fiber Membrane (폴리설폰 중공사막을 이용한 연소 배기가스 중 이산화탄소 분리에 관한 연구)

  • Kim, Seongcheon;Chun, Jeonghyeon;Chun, Youngnam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.147-152
    • /
    • 2014
  • In this research, polysulfone hollow fiber membrane was used to recover $CO_2$ which is one of greenhouse gases from flue gas stream being emitted after the combustion of fossil fuels. The prerequisite requirement is to design the membrane process producing high-purity $CO_2$ from flue gas. For separation of $CO_2$, a membrane module and flue gas containing 10% carbon dioxide was used. The effects of operating conditions such as pressure, temperature, feed gas composition and multi-stage membrane on separation performance were examined at various stage cuts. Higher operating pressure and temperature increased carbon dioxide concentration and recovery ratio in permeate. Recovery ratio and separation efficiency increased if a higher content of $CO_2$ injection gas composition. Three-stage membrane system was producing a 95% $CO_2$ with 90% recovery from flue gas. The separation efficiency of three-stage membrane system was higher than one-stage system.

Study on Separation Characteristics of Flue Gas Using Hydroquinone Clathrate Compounds (하이드로퀴논 크러스레이트를 이용한 배가스 분리 특성 연구)

  • Lee, Jong-Won;Choi, Ki-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.865-868
    • /
    • 2011
  • An organic substance, hydroquinone is used to form clathrate compounds in order to identify separation characteristics of carbon dioxide in flue gas. Formed samples were analyzed by means of the solid-state $^{13}C$ nuclear magnetic resonance (NMR) and Raman spectroscopic methods to examine enclthration behaviors of guest species. In addition, elemnetal analysis was also performed in order to evaluate separation efficiency of $CO_2$ in a quantitative way. Based on the experimental results obtained, $CO_2$ molecules are found to be captured into the clathrate compound more readily than $N_2$ molecules. Moreover, because such preferential enclathration is even more significant at low pressure conditions, $CO_2$ separation/recovery from flue gas can be achieved with minimizing additional energy cost for the technique. Experimental results obtained in this study can provide useful information on separation techniques of flue gas or selective separation of gas mixtures in the future.

Research Trend of Membrane Technology for Separation of Carbon Dioxide from Flue Gas (온실기체 분리회수를 위한 막분리기술 연구 동향)

  • 김정훈;임지원;이수복
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.121-142
    • /
    • 2002
  • The $CO_2$ emission is the largest contribute for the green house effect. Among the existing chemical separation processes, the membrane separation technology is(/will be) the most potential process for $CO_2$, separation from flue gas. Based on the solution-diffusion theory and physical properties of carbon dioxide/nitrogen and the permeation data in the literature, the relationships between physico-chemical structures of polymeric membrane materials and the perm-selectivities for $CO_2$/$N_2$ gases were described in detail. The progress of membrane module and process development was introduced briefly. Finally, the worldwide research activity including South Korea's for carbon dioxide separation by membrane technology were introduced through the survey of papers and technical reports published.

Gas Separation Membranes Prepared from Polystyrene-block-Polybutadiene/Poly(phenylene oxide) Blends for Carbon Dioxide Separation from a Flue Gas (배기가스로부터 이산화탄소 분리를 위한 SB 이종 블록공중합체/즐리페닐렌 옥사이드 블렌드 기체분리막)

  • Jung, You-Sun;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.593-597
    • /
    • 2008
  • To separate carbon dioxide from a flue gas, membranes for gas separation was fabricated from polystyrene-b-polybutadiene (SB) diblock copolymer blends with poly(phenylene oxide), PPO. SB diblock copolymer formed miscible blends with PPO in the experimental range (lower than or equal to 70 wt% PPO). When the blend contained PPO whose composition is in the range of 40-50 wt%, the discontinuous phase of polybutadiene block in SB diblock copolymer, was changed to discrete phase, while polystyrene blocks containing PPO was changed to the continuous phase. A sudden decrease of the gas permeability and a sudden increase of the gas selectivity was observed at these blend compositions. A gas separation membranes having excellent mechanical properties and exhibiting advantages in gas permeability and selectivity could be fabricated from blends containing more than 50 wt% PPO.

The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant (이산화탄소 5 ton/day 흡수분리 Pilot Plant 운전 특성)

  • O, Min-Gyu;Park, So-Jin;Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.128-134
    • /
    • 2012
  • The pilot scale experiments can handle the flue gas up to 1,000 $Nm^3/hr$ for separation of carbon dioxide included in real flue gas at coal-fired power plant. The operational characteristics was analyzed with the main experimental variables such as flue gas flow rate, absorbent circulation rate using chemical absorbents mono-ethanolamine( MEA) and 2-amino-2-methyl-1-propanol(AMP). The more flue gas flow rate decreased in 100 $m^3/hr$ in the MEA 20 wt% experiments, the more carbon dioxide removal efficiency was increased 6.7% on average. Carbon dioxide removal efficiency was increased approximately 2.8% according to raise of the 1,000 kg/hr absorbent circulation rate. It also was more than 90% at $110^{\circ}C$ of re-boiler temperature. Carbon dioxide removal efficiency of the MEA was higher than that of the AMP. In the MEA(20 wt%) experiment, carbon dioxide removal efficiency(85.5%) was 10% higher than result(75.5%) of ASPEN plus simulation.

Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation (온실기체 분리용 폴리이서설폰 비대칭 중공사 막의 제조)

  • Kim Jeong-Hoon;Sohn Woo-Ik;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.

A Study on the Separation of $CO_2$from Flue Gas by Chemical Absorption (화학흡수법에 의한 연소폐가스 중 지구온난화 가스 $CO_2$분리에 관한 연구)

  • 안성우;김영국;송호철;박진원
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.203-211
    • /
    • 1997
  • This study is on the separation of Global warming effect gas, CO$_2$by chemical absorption from mixture of CO$_2$-N$_2$which was modeled after flue gas of fire power plant. Investigation of optimum condition for absorbent was carried out by using sparged vessel apparatus. Through packed tower experiments, applicabilities of two absorption models were tested by comparing experimental results with theoretical values. Absorbent used in the experiments was Monoethanolamine (MEA) and gas mixture was made in the mole composition of 15% CO$_2$and 85% N$_2$. Through estimations of CO$_2$loading and CO$_2$removal efficiency, optimum concentration of absorbent was found in the range of 4-5 M. To find a rate of absorption, an enhancement factor was introduced. Values of rate of absorption were calculated by Film model and Higbie model, respectively. Higbie model showed good agreement with experimental results. Therefore, this models is considered to be applicable to the CO$_2$separation process for flue gas from fire power plant.

  • PDF

Adsorption characteristics of the zeolite for flue gas desulfurization (제올라이트의 아황산가스흡 ${\cdot}$ 탈착특성)

  • Park, Hyun-Hee;Mo, Se-Young
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.43-47
    • /
    • 2003
  • The desorption characteristics of NaY zeolite, of which Si/Al ratio is 2.36, was measured at 25${\circ}$C and 150${\circ}$C so as to be used practically as a adsorbent for separation of sulfur oxides from flue gas, for which adsorption and desorption cycles at 25${\circ}$C were repeated four times and that at 150${\circ}$C was done one time. As a result it took 30.8 at 150${\circ}$C and 164.1 minutes in average at 25${\circ}$C to reach equilibrium condition. It means that regeneration of the NaY zeolite can be done below 150${\circ}$C so that zeolite can be used for flue gas desulfurization.

Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review (순산소 및 배가스 재순환 연소 기술)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.729-753
    • /
    • 2008
  • Oxy-fuel combustion is a reliable way for the reduction of pollutants, the higher combustion efficiency and the separation of carbon dioxide. The review of recent research trends and the prospects of oxy-fuel combustion were presented. The difference in characteristics among oxy-fuel combustion, conventional air combustion, oxy-fuel combustion with flue gas recirculation (FGR) technique was investigated. Recent experiments of oxy-fuel combustion with/without FGR were surveyed in various ways which are optimized burner design, flame characteristics, the soot emission, the radiation effect, the NOx reduction and the corrosion of combustor. Numerical simulation is more important in oxy-fuel combustion because flame temperature is so high that conventional measurement devices have a restricted application. Equilibrium and non-equilibrium chemical reaction mechanisms for oxy-fuel combustion were investigated. Combustion models suitable for the numerical simulation of non-premixed oxy-fuel flame were surveyed.

Conceptual Design of 100 MWe Oxy-coal Power Plant-Youngdong Project (100 MWe 순산소 석탄연소 발전시스템의 개념설계-영동 프로젝트)

  • Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.30-45
    • /
    • 2012
  • An existing unit of power plant is considered to refurbish it for possible application of carbon capture and storage(CCS). Conceptual design of the plant includes basic considerations on the national and international situation of energy use, environmental concerns, required budget, and time schedule as well as the engineering concept of the plant. While major equipment of the recently upgraded power plant is going to be reused, a new boiler for air-oxy fired dual mode operation is to be designed. Cryogenic air separation unit is considered for optimized capacity, and combustion system accommodates flue gas recirculation with multiple cleaning and humidity removal units. The flue gas is purified for carbon dioxide separation and treatment. This paper presents the background of the project, participants, and industrial background. Proposed concept of the plant operation is discussed for the possible considerations on the engineering designs.