Browse > Article

Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation  

Kim Jeong-Hoon (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology)
Sohn Woo-Ik (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology)
Choi Seung-Hak (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Green Chemistry and Environmental Biotechnology, University of Science and Technology)
Lee Soo-Bok (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology)
Publication Information
Membrane Journal / v.15, no.2, 2005 , pp. 147-156 More about this Journal
Abstract
It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.
Keywords
polyethersulfone; dry-wet spinning; asymmetric hollow fiber membrane; flue gas separation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Ohya, V. V. Kudryavtsev, and S. I, Semenova, Chap. 4, Separation properties of polymer, Polyimide Membranes-Applications, Fabrications, and Properties,; R. E. Kesting, and A. K. Fritzsche, Chap. 3, Membrane polymer; Polymeric Gas Separation Membranes (1993)
2 S. Kazama, T. Teramoto, and K. Haraya, 'Carbon dioxide and nitrogen transport properties of bis (phenyl) fluorene-based cardo polymer membranes', J. Membr. Sci., 207, 91 (2002)
3 H. Mano, '$CO_2$ 分離用 cardo形 polymer膜-開發, 工業材料', 48(8), 21 (2000)
4 G. C. Kapantaidakis, 'Simulation of gas separation in hollow fiber membranes by orthogonal collocationapplication to the recovery of carbon dioxide from flue gases in a polyimide pilot plant unit', NAMS'98, Cleveland, Ohio (1998)
5 G. C. Kapantaidakis and G. H. Koops, 'High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation', J. Membr. Sci., 204, 153 (2002)
6 R. L. Mckee, M. K. Change la, and G. J. Reading, '$CO_2$ removal : Membrane plus amine', Hydrocarbon Processing, Apr., 63 (1991)
7 D. Wang, K. Li, and W. K. Teo, 'Highly permeable polysulfone hollow fiber gas separation membranes prepared using water as non-solvent additive', J. Membr. Sci., 176, 147 (2000)
8 R. Baker, 'Future directions of membrane gas separation technology', Membr. Tech., 138, 5 (2002)
9 T. Chung. W. Lin, and R. H. Yora, 'The effect of shear rates on gas separation performances of 6FDA-durene polyimide hollow fibers', J. Membr. Sci., 167, 55 (2000)   DOI   ScienceOn
10 P. J. Cook, 'Membranes provide cost-effective natural gas processing', Hydrocarbon Processing, Apr., 79 (1995)
11 R. W. Spillman, 'Economics of gas separation membranes', Chemical Engineering Progress, 41 (1989)
12 K. Haraya, K. Obata, N. Itoh, Y. Shnod, T. Hakuta, and H. Y oshitome, 'Gas permeation and separation by an asymmetric polyimide hollow fiber membrane', J. Membr. Sci., 41, 23 (1989)
13 D. L. Ellig, J. B. Althouse, and F. P. McCandless, 'Concentration of methane from mixtures with carbon dioxide by permeation through polymeric films', J. Membr. Sci., 6, 259 (1980)
14 Y. Hiarayama, S. Kazama, E. Fujisawa, M. Nakabayashi, N. Matsumiya, K. Takagi, K. Okabe, H. Mano, K. Haraya, and C. Kamizawa, 'Novel membranes for carbon dioxide separation', Energy Conservs. Mgmt., 36(6-9), 435 (1995)
15 H. Suzuki, K. Tanaka, H. Kita, K. Okamoto, H. Hoshino, T. Yoshinaga, and Y. Kusuki, 'Preparation of composite hollow fiber membranes of poly( ethylene oxide )-containing polyimide and their $CO_2/N_2$ separation properties', J. Membr. Sci., 146, 31 (1998)
16 W. H. Mazur and M. C. Chan, 'Membranes for natural gas sweetening and $CO_2$ enrichment', Chemical Engineering Process, Oct., 38 (1982)
17 R. L. Schedel, D. L. Mariz, and J. Y. Mak, 'Is permeation competitive?', Hydrocarbon Processing, Aug., 59 (1983)
18 I. Pinnau, J. Wind, and K. V. Peinemann, 'Ultrathin multicomponent poly( ether sulfone) membranes for gas separation made by dry/wet phase inversion', Ind. Eng. Chem. Res., 29, 2028 (1990)
19 J. Ren, T-Chung, D. Li, R. Wang, and Y. Liu, 'Development of asymmetric 6FDA-2,6 DAT hollow fiber membranes for $CO_2/CH_4$ separation I. The influence of dope composition and rheology on membrane morphology and separation performance', J. Membr. Sci., 207, 227 (2002)