• 제목/요약/키워드: flow shop

검색결과 158건 처리시간 0.026초

2단계 혼합흐름공정에서 납기 지연 작업수의 최소화를 위한 분지한계 알고리듬 (A Branch and Bound Algorithm for Two-Stage Hybrid Flow Shop Scheduling : Minimizing the Number of Tardy Jobs)

  • 최현선;이동호
    • 대한산업공학회지
    • /
    • 제33권2호
    • /
    • pp.213-220
    • /
    • 2007
  • This paper considers a two-stage hybrid flow shop scheduling problem for the objective of minimizing the number of tardy jobs. Each job is processed through the two production stages in stages, each of which has multiple identical parallel machines. The problem is to determine the allocation and sequence of jobs at each stage. A branch and bound algorithm that gives the optimal solutions is suggested that incorporates the methods to obtain the lower and upper bounds. Dominance properties are also suggested to reduce the search space. To show the performance of the algorithm, computational experiments are done on randomly generated problems, and the results are reported.

Special Cases on Two Machine Flow Shop Scheduling with Weighted WIP Costs

  • Yang, Jae-Hwan
    • Management Science and Financial Engineering
    • /
    • 제15권2호
    • /
    • pp.69-100
    • /
    • 2009
  • In this paper, we consider a relatively new two-machine flow shop scheduling problem where the unit time WIP cost increases as a job passes through various stages in the production process, and the objective is to minimize the total WIP (work-in-process) cost. Specifically, we study three special cases of the problem. First, we consider the problem where processing times on machine 1 are identical. Second, the problem with identical processing times on machine 2 is examined. The recognition version of the both problems is unary NP-complete (or NP-complete in strong sense). For each problem, we suggest two simple and intuitive heuristics and find the worst case bound on relative error. Third, we consider the problem where the processing time of a job on each machine is proportional to a base processing time. For this problem, we show that a known heuristic finds an optimal schedule.

Min-Max Regret Version of an m-Machine Ordered Flow Shop with Uncertain Processing Times

  • Park, Myoung-Ju;Choi, Byung-Cheon
    • Management Science and Financial Engineering
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2015
  • We consider an m-machine flow shop scheduling problem to minimize the latest completion time, where processing times are uncertain. Processing time uncertainty is described through a finite set of processing time vectors. The objective is to minimize maximum deviation from optimality for all scenarios. Since this problem is known to be NP-hard, we consider it with an ordered property. We discuss optimality properties and develop a pseudo-polynomial time approach for the problem with a fixed number of machines and scenarios. Furthermore, we find two special structures for processing time uncertainty that keep the problem NP-hard, even for two machines and two scenarios. Finally, we investigate a special structure for uncertain processing times that makes the problem polynomially solvable.

흐름생산시스템에서 품질향상을 위한 실험 계획 설계 -이산화망간-리튬 전지의 품질 향상을 중심으로 (A Study on the Design of Experiment Planning for Quality Improvement in Flow Shop Manufacturing System)

  • 박해천;홍남표
    • 산업경영시스템학회지
    • /
    • 제24권63호
    • /
    • pp.101-110
    • /
    • 2001
  • This study is concern with the design of experiment planning for quality improvement in flow shop manufacturing system. In this study, the procedure of two stage experiment planning are proposed and applied to the manufacturing process of Li/$MnO_2$ batteries. The result of in this paper is that, compared with the current process conditions, 52% of the insulation inspection process, 81.6% of the first premier discharge process, 98.5% of the second premier discharge process, 84.7% of O.C.V./C.C.V. process, and 86.2% of voltage inspection process are decreased. After a given period of time, the life of the batteries extends to 75 hours, which means the 15% improvement in capacity. In case that the proposed methods are applied to the process Improvements of the flow shop manufacturing system, the much effected in experimental cost- saving and quality improvement.

  • PDF

A Special Case of Three Machine Flow Shop Scheduling

  • Yang, Jaehwan
    • Industrial Engineering and Management Systems
    • /
    • 제15권1호
    • /
    • pp.32-40
    • /
    • 2016
  • This paper considers a special case of a three machine flow shop scheduling problem in which operation processing time of each job is ordered such that machine 1 has the longest processing time, whereas machine 3, the shortest processing time. The objective of the problem is the minimization of the total completion time. Although the problem is simple, its complexity is yet to be established to our best knowledge. This paper first introduces the problem and presents some optimal properties of the problem. Then, it establishes several special cases in which a polynomial-time optimal solution procedure can be found. In addition, the paper proves that the recognition version of the problem is at least binary NP-complete. The complexity of the problem has been open despite its simple structure and this paper finally establishes its complexity. Finally, a simple and intuitive heuristic is developed and the tight worst case bound on relative error of 6/5 is established.

A High Quality Solution Constructive Heuristic for No-Wait Flow Shop Scheduling Problem

  • Nagano, Marcelo Seido;Miyata, Hugo Hissashi
    • Industrial Engineering and Management Systems
    • /
    • 제15권3호
    • /
    • pp.206-214
    • /
    • 2016
  • This paper deals with the no-wait flow shop scheduling problem in order to minimize the total time to complete the schedule or makespan. It is introduced a constructive heuristic which builds the production schedule from job partial sequences by using an appropriate mechanism of insertion. An extensive computational experiment has been performed to evaluate the performance of proposed heuristic. Experimental results have clearly shown that the presented heuristic provides better solutions than those from the best heuristics existing.

전용기계가 있는 혼합흐름공정의 생산 일정 계획 수립을 위한 2단계 접근법 (A Two-Stage Scheduling Approach on Hybrid Flow Shop with Dedicated Machine)

  • 김상래;강준규
    • 품질경영학회지
    • /
    • 제47권4호
    • /
    • pp.823-835
    • /
    • 2019
  • Purpose: This study deals with a production planning and scheduling problem to minimize the total weighted tardiness on hybrid flow shop with sets of non-identical parallel machines on stages, where parallel machines in the set are dedicated to perform specific subsets of jobs and sequence-dependent setup times are also considered. Methods: A two-stage approach, that applies MILP model in the 1st stage and dispatching rules in the 2nd stage, is proposed in this paper. The MILP model is used to assign jobs to a specific machine in order to equalize the workload of the machines at each stage, while new dispatching rules are proposed and applied to sequence jobs in the queue at each stage. Results: The proposed two-stage approach was implemented by using a commercial MILP solver and a commercial simulation software and a case study was developed based on the spark plug manufacturing process, which is an automotive component, and verified using the company's actual production history. The computational experiment shows that it can reduce the tardiness when used in conjunction with the dispatching rule. Conclusion: This proposed two-stage approach can be used for HFS systems with dedicated machines, which can be evaluated in terms of tardiness and makespan. The method is expected to be used for the aggregated production planning or shop floor-level production scheduling.

자동차 생산계획 시스템에서 제약만족기법을 이용한 생산 시퀀스 모듈 구현 (Implementation of a Vehicle Production Sequencing Module Using Constraint Satisfaction Technique for Vehicle Production Planning System)

  • 하영훈;우상복;안현식;한형상;박영진
    • 산업공학
    • /
    • 제16권3호
    • /
    • pp.352-361
    • /
    • 2003
  • Vehicle manufacturing plant is a typical mixed-model production system. Generally it consists of three main shops including body shop, painting shop and assembly shop in addition to engine shop. Each shop contains diverse manufacturing processes, all of which are integrated in a form of flow line. Due to the high pressure from the market requesting small-volume large variety production, production planning becomes very critical for the competitiveness of automotive industry. In order to save costs and production time, production planning system is requested to meet some designated requirements for each shop: to balance the work load in body and assembly shops, and to minimize the number of color changes in painting shop. In this context, we developed a sequencing module for a vehicle production planning system using the ILOG Solver Library. It is designed to take into account all the manufacturing constraints at a time with meeting hard constraints in body shop, minimizing the number of soft constraints violated in assembly shop, and minimizing the number of color changes in painting shop.

셀생산(生産)의 효율적(效率的)인 운용(運用)을 위한 시뮤레이션 연구(硏究) (Determining Appropriate Production Conditions in Cellular Manufacturing Systems)

  • 송상재;최정희
    • 대한산업공학회지
    • /
    • 제19권2호
    • /
    • pp.23-34
    • /
    • 1993
  • Although there are numerous studies that address the problem of optimal machine grouping and part family classification for cellular manufacturing, little research has been reported that studies the conditions where cellular manufacturing is appropriate. This paper, in order to evaluate and compare the job shop with the GT cellular shop, the performance of those shops were simulated by using SIMAN. We tested the effect of independent variables including changes of product demands, intercell flow level, group setup time, processing time variability, variety of material handling systems, and job properties (ratio of processing time and material handling time). And also performance measures (dependent variables), such as machine utilization, mean flow time, average waiting time, and throughput rate, are discussed. Job shop model and GT cellular shop written in SIMAN simulation language were used in this study. These systems have sixteen machines which are aggregated as five machine stations using the macro feature of SIMAN. The results of this research help to better understand the effect of production factors on the performance of cellular manufacturing systems and to identify some of the necessary conditions required to make these systems perform better than traditional job shops. Therefore, this research represents one more step towards the characterization of shops which may benefit from cellular manufacturing.

  • PDF

Multi-factors Bidding method for Job Dispatching in Hybrid Shop Floor Control System

  • Lee, Seok--Hee;Park, Kyung-Hyun;Bae, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.124-131
    • /
    • 2000
  • A shop floor can be considered as and importand level to develop a Computer Integrated Manufacturing system (CIMs). The shop foor is a dynamic environment where unexpected events contrinuously occur, and impose changes to planned activities. The shop floor should adopt an appropriate control system that is responsible for scheduling coordination and moving the manufacturing material and information flow. In this paper, the architecture of the hybrid control model identifies three levels; i.e., the shop floor controller (SFC), the cell controller(CC) and the equipment controller (EC). The methodology for developing these controller is employ an object-oriented approach for static models and IDEF0 for function models for dispatching a job. SFC and CC are coordinated by employing a multi-factors bidding and an adapted Analytic Hierarchy Process(AHP) prove applicability of the suggested method. Test experiment has been conducted by with the shopfloor, consisting of six manufacturing cells.

  • PDF