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Scheduling : Minimizing the Number of Tardy Jobs

Hyun-Seon Choi․Dong-Ho Lee†*

Department of Industrial Engineering, Hanyang University, Seoul 133-791, Korea
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This paper considers a two-stage hybrid flow shop scheduling problem for the objective of minimizing the 
number of tardy jobs. Each job is processed through the two production stages in series, each of which has 
multiple identical parallel machines. The problem is to determine the allocation and sequence of jobs at each 
stage. A branch and bound algorithm that gives the optimal solutions is suggested that incorporates the methods 
to obtain the lower and upper bounds. Dominance properties are also suggested to reduce the search space. To 
show the performance of the algorithm, computational experiments are done on randomly generated problems, 
and the results are reported.
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1. Introduction

A hybrid flow shop, alternatively called a flow 
shop with multiple processors, is an extended sys-
tem of the ordinary flow shop. The hybrid flow 
shop consists of two or more production stages in 
series, but there exist one or more parallel ma-
chines at each stage. The parallel machines are 
added to each stage of the flow shop for the ob-
jective of increasing productivity and/or flexibility. 
That is, it is natural to increase the system ca-
pacity by adding machines at a certain production 
stage (Gupta, 1988). The flow of jobs is basically 

unidirectional through the serial production stages, 
and each job can be processed by one of the par-
allel machines at each stage. There may be finite 
buffers to decouple consecutive production stages. 
Also, a certain amount of setup time may be re-
quired when changing the product type at each 
machine.

This paper considers hybrid flow shop scheduling 
which is the problem of allocating jobs to parallel 
machines at each stage and sequencing the jobs al-
located to each machine. Note that the two deci-
sion variables are those of parallel machine sched-
uling and flow shop scheduling. Hybrid flow shops 
are commonly found in the industries (Huang and 
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Li, 1998). For example, they can be found in the 
electronics industry such as printed circuit board 
manufacturing, semiconductor manufacturing, and 
lead frame manufacturing (Lee and Kim, 2004, Linn 
and Zhang, 1999). Also, a number of traditional 
industries, such as food, chemical and steel, have 
various types of hybrid flow shops (Tsubone et al., 
1996).

The research articles on hybrid flow shop sched-
uling can be classified using the performance mea-
sures used, i.e., those without due-date such as 
makespan and total flow time and those with due- 
date such as maximum tardiness, number of tardy 
jobs and mean tardiness. (See Linn and Zhang, 1999 
for a literature review.) Gupta and Tunc (1991) con-
sider the problem with the objective of minimizing 
makespan and suggest heuristic algorithms. Other 
heuristics for minimizing makespan are suggested 
by Lee and Vairaktarakis (1994), Chen (1995) and 
Lee and Park (1999) that consider two-stage hybrid 
flow shop. Fouad et al. (1998) consider a three- 
stage hybrid flow shop scheduling problem occur-
red in the woodworking industry and suggest heu-
ristic algorithms. Brah and Hunsucker (1991) sug-
gest branch and bound algorithms that minimize 
makespan, and later, their lower bounds were im-
proved by Moursli and Pochet (2000). Also, Azizoglu 
et al. (2001) consider the problem with the objec-
tive of minimizing total flow time and suggest a 
branch and bound algorithm.

Several research articles consider due-date based 
measures. Guinet and Solomon (1996) suggest the 
list scheduling algorithms for multi-stage hybrid flow 
shop scheduling with the objective of minimizing 
maximum tardiness. Here, the list scheduling algo-
rithms list the jobs in some order using a priority 
rule and assigns them to the machines according to 
this order. Gupta and Tunc (1998) consider the two- 
stage hybrid flow shop scheduling with the ob-
jective of minimizing the number of tardy jobs and 
suggest several heuristic algorithms. Here, a tardy 
job is defined as the job whose completion time is 
greater than its due date. Recently, Lee and Kim 
(2004) considered a two-stage hybrid flow shop 
with parallel machines only at the first stage and 
suggested a branch and bound algorithm that mini-
mizes total tardiness. Later, Lee et al. (2004) ex-
tended their research to multi-stage hybrid flow shop 
and suggested a bottleneck-focused heuristic for the 

objective of minimizing total tardiness. In this heu-
ristic, a schedule for the bottleneck stage is first 
constructed and then the schedules for the other 
stages are constructed based on that for the bott-
leneck.

This paper focuses on a scheduling problem in 
two-stage hybrid flow shops with the objective of 
minimizing the number of tardy jobs. The objective 
considered in this paper is important in many cases 
since the cost penalty incurred by a tardy job does 
not depend on how late it is, but the fact that it is 
late. For example, a late job may cause a customer 
to switch to another supplier, especially in the just- 
in-time production environment (Ho and Chang, 1995). 
As noted in the previous research articles, the pro-
blem considered in this paper is an NP-hard pro-
blem. This can be easily seen from the fact that 
the parallel machine scheduling problem that mini-
mizes the number of tardy jobs is NP-hard (Garey 
and Johnson, 1979). As stated earlier, the objective 
of minimizing the number of tardy jobs is dealt 
with by Gupta and Tunc (1998) that considers a 
two-stage hybrid flow shop with only one machine 
at the first stage. Unlike this, we focus on general 
two-stage hybrid flow shops in which two or more 
machines exist at each stage. In addition, we sug-
gest a branch and bound algorithm that gives opti-
mal solutions. The methods to obtain the lower and 
upper bounds are suggested and also dominance 
properties are derived to reduce the solution space. 
To show the performance of the algorithm, compu-
tational experiments are performed on randomly 
generated problems, and the results are reported.

This paper is organized as follows. In the next 
section, the problem considered here is described 
in more detail with a mathematical formulation. The 
branch and bound algorithm is presented in Section 
3, and the results of computational test are repor-
ted in Section 4. Finally, Section 5 concludes the 
paper with a short summary and discussions on po-
ssible extensions.

2.  Problem Description

Before describing the problem considered in this 
paper, we present the structure of the two-stage 
hybrid flow shop. As stated earlier, the two-stage 
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hybrid flow shop consists of two serial stages, al-
ternatively called workstations in the literature, but 
there exist one or more identical parallel machines 
at each stage. In Figure 1, Mk denotes the number 
of machines at stage k, k = 1, 2. Each job consists 
of two operations, i.e., the first (second) one is 
processed on one of the parallel machines at the 
first (second) stage. Here, the operations are proc-
essed sequentially, without overlapping between 
stages.

Figure 1. Two-stage hybrid flow shop : a schematic 
view

As stated earlier, there are two types of decision 
variables in the two-stage hybrid flow shop sched-
uling problem considered in this paper. They are; 
(a) allocating jobs to the parallel machines at each 
stage and (b) sequencing the jobs allocated to each 
machine. The objective is to minimize the number 
of tardy jobs, i.e., 

minimize 




 ,

where Ti = max{0, Ci - di} and (a) = 1 if a > 0, 
and 0 otherwise. Here, Ci and di denote the com-
pletion time and the due date of job i, respectively. 
Note that the completion times of jobs depend on 
the two decision variables, allocation and sequenc-
ing, and the problem considered here is to de-
termine them for the objective of minimizing the 
number of tardy jobs in the general two-stage hy-
brid flow shop.

This paper considers a static and deterministic 
scheduling problem. That is, all jobs are ready for 
processing at time zero, i.e., zero ready time, and 
job descriptors such as processing times and due 
dates are deterministic and given in advance. It is 

assumed that the parallel machines at each stage 
are identical and hence processing time of an oper-
ation at each stage is the same for each of the ma-
chines at that stage. Other assumptions made in the 
problem considered here are : (a) no job can be split 
or pre-emptied; (b) each machine can process only 
one job at a time and each job can be processed 
on one machine; (c) machine breakdowns are not 
considered; and (d) the buffer capacity between the 
two stages is infinite.

The hybrid flow shop scheduling problem consid-
ered in this paper can be formulated as an integer 
programming model. First, the notations used are 
summarized below.

Parameters 
Mk number of identical machines at stage k, k 

= 1, 2
di due date of job i, i = 1,…, N
pik processing time of job i at stage k 
V large number

Decision variables
xijmk = 1 if job j is processed directly after job 

i on machine m at stage k, and 0 other-
wise (x0jmk = 1 if job j is the first job to 
be processed on machine m at stage k and 
xi0mk = 1 if job i is the last job to be proc-
essed on machine m in stage k.)

cik completion time of job i at stage k

Now, the integer programming model, modified 
from that of Guinet and Solomon (1996), is given 
as follows.  

Minimize 






  subject to

   









 = 1  for all  j, k and i ≠ j (1)
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i = 0,…, N (4)

  ≥        for all j and k (5)

       for all i (6)

     if Ti > 0 and 0 otherwise for all i  (7)

 ∈  for all i, j, k and m (8)

  ≥     for all j and k (9)

       for all j and            (10)

The objective function denotes minimizing the 
number of tardy jobs, where the tardiness of each 
job is specified in constraint (6). Constraint (1) en-
sures that each job is processed once and once on-
ly at each stage. Constraint (2) specifies that each 
machine must be assigned to one job at most. 
Note that x0jmk = 1 if job j is the first job to be pro-
cessed on machine m at stage k. Similarly, xi0mk = 1 
if job i is the last job to be processed on machine 
m in stage k. Constraints (3) ensure that each job 
has a predecessor and a successor on its machine. 
The job completion time at each machine is repre-
sented by constraints (4) and (5). In other words, 
constraint (4) implies that if job j is processed di-
rectly after job i on machine m at stage k, the com-
pletion time of job j at stage k is larger than or 
equal to the sum of the completion time of job i 
at stage k and the processing time of job j at stage 
k. Also, constraint (5) implies that the completion 
time of job j at stage k is larger than or equal to 
the sum of the completion time of job j at stage k -
1 and the processing time of job j at stage k. Con-
straints (7) specify the number of tardy jobs. Final-
ly, the other constraints (8), (9) and constraints (10) 
are the conditions on the decision variables. 

3.  Branch and Bound Algorithm

This section presents the branch and bound 
(B&B) algorithm suggested in this paper. First, we 
present the branching scheme that generates all 
possible schedules. Then, the methods to obtain the 
lower and upper bounds are suggested. As in the 
ordinary B&B algorithm, each node of the B&B 
tree can be deleted from further consideration 
(fathomed) if the lower bound at the node is great-

er than or equal to the incumbent solution value, 
i.e., the smallest upper bound of all nodes obtained 
so far. Finally, the dominance properties are sug-
gested to reduce the search space.

3.1 Branching  
To generate all possible solutions, we adopt the 

idea of Azizoglu et al. (2001) that consider the 
problem with minimizing total flow time. The en-
tire B&B tree consists of two subtrees in series, 
each of which represents N! orderings of jobs at 
each stage of the hybrid flow shop. In the first 
subtree, N nodes are branched from the root node 
(level 1), N - 1 nodes from each node at the second 
level, and so on. Also, the second subtree starts 
from each of the leaf nodes of the first subtree. 
That is, N nodes are branched at level N + 1, N - 1 
nodes at the level N + 2, and so on. In this way, 
we can generate (N!)2 orderings of jobs. 

Each node of the first (second) subtree corre-
sponds to a partial schedule at the first (second) 
stage. More specifically, at each node, a set of jobs 
can be specified by going back on the path from 
that node toward the root node, and each of these 
jobs are allocated and sequenced to the earlier av-
ailable machine in sequence. In this way, we can 
generate all possible allocation and sequence at 
each stage of the hybrid flow shop since we con-
sider the regular measure of performance. See 
Azizoglu et al. (2001) for more details on how the
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Figure 2. Branch and bound tree: example
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B&B tree explained here can generate all feasible 
schedules. <Figure 2> shows an example of the 
B&B tree for a problem with 3 jobs. It can be 
seen from the figure that this method determines 
the job schedule from the first to the second stage.

For node selection (or branching), the depth-first 
rule is used in this study. In this rule, if the cur-
rent node is not fathomed, the next node to be 
considered is one of its child node, i.e., the node  
with the smallest index.

3.2  Bounding 
3.2.1  Obtaining the lower bound
The lower bound suggested in this paper is com-

puted at each node of the B&B tree. As stated 
earlier, each node of the B&B tree corresponds to 
a partial schedule and the lower bound is computed 
by estimating the smallest (and also infeasible) com-
pletion time of each job at the second stage. To 
do this, we use the partial schedule and the jobs 
not included in the partial schedule. Let PSl denote 
the set of jobs included in the partial schedule at 
node l. 

Two cases are considered in the computation of 
the lower bound.

Case 1 : When the current node l is at the first 
subtree

In this case, the lower bound at node l is calcu-
lated by

 NT1 + NT2,

where NT1 is the number of tardy jobs calculated 
for those in the partial schedule PSl and NT2 is the 
number of tardy jobs derived from those not in 
PSl. 

First, NT1 is calculated by estimating the smallest 
(but infeasible) completion time of each job in PSl 
at the second stage. That is, the smallest com-
pletion time of each job can be set as 

        
  

where φT is the ready time of the earliest available 
machine at the second stage and cik, as defined 
earlier, is the completion time of job i at stage k. 
Here, the earliest available machine at the second 
stage implies the one with the smallest completion 

time of the last scheduled job among those in PSl.  
Note that the smallest completion time of a job 
given above is always smaller than the completion 
time of that job in the optimal schedule. This is 
because the delay times are ignored when calculat-
ing NT1. Then, the number of tardy jobs NT1 can 
be calculated by comparing the smallest completion 
time and due date of each job in PSl. That is, 

  
∈
 ,

where Ti = max{0, ci2 - di} for  i∈PSl.
Second, NT2 is calculated by aggregating the 

two-stage hybrid flow shop scheduling problem in-
to the single machine problem that minimizes the 
number of tardy jobs. In this method, the process-
ing time of job i ∉PSl at the second stage is 
modified as

′   ,
i.e., job splitting is allowed, and the corresponding 
single machine scheduling problem is solved using 
the optimal algorithm of Moore (1968). Then, NT2 
is set to the number of tardy jobs obtained from 
the single machine problem. That is, 

  
∉

 ,

where Ti = max{0, ci - di} for i ∉PSl. Note that 
ci is the completion time of job i obtained by the 
algorithm of Moore (1968). Note that NT2 is a val-
id lower bound for the jobs not in PSl since it is 
assumed that each unscheduled job is completed at 
the first stage before its release time at the second 
stage. Also, the single machine scheduling problem 
is solved using the modified processing time, i.e., 
processing time divided by the number of parallel 
machines at the second stage.

Case 2 : When the current node l is at the second 
subtree

Like the method of case 1, the lower bound in 
this case is calculated by 

NT1 + NT2.

Here, NT1 is calculated using the method of the 
first case, i.e., estimating the smallest (but in-
feasible) completion time of each job at the second 
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stage. More formally,  

  
∈
 ,

where Ti = max{0, ci2 - di} for i∈ PSl. Here, ci2 is 
the completion time of job i at the second stage 
and can be obtained directly from the partial sche-
dule. On the other hand, NT2 for i ∉ PSl is calcu-
lated by estimating the completion time as 

   .

Note that in this case, the waiting time of un-
scheduled jobs at the second stage, i.e., max{0, ci1

- φT}, is ignored. Therefore, NT2 is a valid lower 
bound for the jobs not in PSl.

3.2.2  Obtaining the upper bound 
The initial upper bound, i.e., an initial feasible 

solution value, at the root node of the B&B tree is 
obtained using the list scheduling approach. As 
stated earlier, the list scheduling method lists the 
jobs in some order using a priority rule and as-
signs them to the machines according to this order. 
In this paper, we use two priority rules, EDD (ear-
liest due date) and MST (minimum slack time).

The EDD rule is used after modifying the due 
date of each job as

 ′  .
Then, the jobs are ordered in the non-decreasing 

order of ′ , and they are allocated to machines ac-
cording to this order. Note that each job is allo-
cated to the earliest available machine as in the bran-
ching scheme explained earlier. Also, the MST rule 
is the same as the EDD rule except that the jobs 
are ordered according to the non-decreasing order 
of slack time. Here, the slack time is defined as

   .

Now, the intial upper bound is set to the mini-
mum of those obtained by the two rules and up-
dated whenever a better (feasible) solution is ob-
tained at each leaf node of the B&B tree.

3.3  Dominance properties
To reduce the search space of our B&B algo-

rithm, two properties are derived in this paper. The 
first property, which is given blow and its proof is 

omitted here since it is given in Azizoglu and 
Kirca (1998), specifies the condition that a job should 
be positioned last at the first stage of the hybrid 
flow shop. That is, a job satisfying the condition of 
proposition 1 is never tardy in any positions and 
hence can be sequenced last.

Proposition 1. There exists an optimal schedule in 
which job w is processed at the last position on 
any one of the machines at the first stage if

′≥
 





  ,
where ′= -  .

The second property specifies the condition that 
partial schedule σ i is dominated by σ j, where σ i  
is the partial schedule obtained by appending job i 
(not in σ) to the end of partial schedule σ. From 
this property, we can see that job i should be posi-
tioned last at the first stage of the hybrid flow 
shop.

Proposition 2. For any partial schedule σ at the 
first stage, σ i is dominated by σ j if 

pi1 > pj1 and φT + pi1 + pi2 > di, 

where i and j denote indices for the (unscheduled) 
jobs not in partial schedule σ and φT is the ready 
time of the earliest available machine correspond-
ing to the partial schedule σ.

Proof. Let c(σ j)1 denote the completion time of 
job j of partial schedule σ j at the first stage. Two 
cases can be considered.

Case 1 : c(σ j)1 + pj2 > dj

In this case, jobs i and j are both tardy 
jobs at the first stage since φT + pi1 + pi2 > 
di and c(σ j)1 + pj2 > dj. Hence, the num-
ber of tardy jobs of partial schedule σ i is 
the same as that of σ j.

Case 2 : c(σ j)1 + pj2 ≦ dj

In this case, job j may not be a tardy job 
and hence it is better to position job i to 
the last position since pi1 > pj1. In other 
words, the unscheduled jobs can be moved 
earlier, which results that the number of 
tardy jobs of partial schedule σ j is less 
than or equal to that of σ i.
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Therefore, the number of tardy jobs for partial 
schedule σ j is less than that of σ i. This com-
pletes the proof.

4.  Computational Experiments

To show the performance of the B&B algorithm 
suggested in this paper, computational tests were 
done on randomly generated test problems, and the 
results are reported in this section. The algorithm 
was tested with respect to two performance measures. 
They are the number of problems that the B&B al-
gorithm gave the optimal solutions within 5000 
seconds and CPU seconds. Here, the time limit was 
set because the B&B algorithm may not give the 
optimal solutions for large-sized test problems. The 
algorithm was coded in C++ and the test was per-
formed on a workstation with an Intel Xeon pro-
cessor operating at 3.20 GHz clock speed. 

For the test, 960 problems were generated ran-
domly, i.e., 10 problems for each of 96 combina-
tions of the number of machines (1, 2, 3 and 4 at 
the first stage and 2, 3 and 4 at the second stage), 
four levels of the number of jobs (10, 12, 14 and 
15), and two levels of the due date tightness (loose, 
tight). The processing times were generated from 
DU(10, 40), where DU(a, b) is the discrete uni-
form distribution with range [a, b]. Due dates were 
generated using the method of Gupta (1998). That 
is, they were generated from DU(p , p), where α 
and   ( > ) were set to 0.6 (0.2) and 0.8 (0.4) 
for the case of loose (tight) due dates and p was 
set as

        




 




 

         









.

Test results are summarized in <Table 1> that 
shows the number of problems that the B&B algo-
rithm gave the optimal solutions within 5000 sec-
onds and average CPU seconds (in parenthesis). It 
can be seen from the table that the B&B algorithm 
gives the optimal solutions for most test problems. 
In fact, the B&B algorithm gave the optimal sol-
utions up to the problems with 14 jobs for loose 
due dates and 12 jobs for tight due dates. Also, 
we can see that the number of machines at each 

stage plays an important role in the problem 
complexity. That is, the test problems having rela-
tively large number of machines at the first stage 
were easier to solve since Proposition 2 considers 
the parallel machines at the first stage. Also, the 
computation times for the problems with loose due 
dates are smaller than those for the problems with 
tight due dates. However, the computation times of 
both cases increase significantly when the number 
of jobs increases due to the inherent complexity of 
the problem.

Table 1.  Performance of the algorithm
(a) Cases of loose due dates  

Number of  
machines 

at each stage

Number of jobs

10 12 14 15

M1 = 1
M2 = 2 10(0.5)* 10(8.4) 10(105.3) 9(2269.4)
M2 = 3 10(0.3) 10(10.6) 10(253.1) 10(1006.9)
M2 = 4 10(0.4) 10(14.1) 10(193.7) 9(3014.8)

M1 = 2
M2 = 2 10(0.3) 10(5.3) 10(85.2) 10(956.4)
M2 = 3 10(0.2) 10(16.2) 10(140.9) 10(1009.1)
M2 = 4 10(0.4) 10(7.4) 10(78.6) 10(2983.4)

M1 = 3
M2 = 2 10(0.2) 10(6.6) 10(133.5) 10(1096.4)
M2 = 3 10(0.5) 10(8.4) 10(91.0) 10(3089.3)
M2 = 4 10(0.3) 10(18.3) 10(156.2) 10(2040.6)

M1 = 4
M2 = 2 10(0.2) 10(8.2) 10(163.1) 10(563.4)
M2 = 3 10(0.3) 10(3.2) 10(289.4) 10(1902.3)
M2 = 4 10(0.2) 10(5.1) 10(170.4) 10(2634.5)

* number of problems that the B&B algorithm gave the optimal 
solutions out of 10 problems and CPU seconds (in parenthesis) 

(b) Cases of tight due dates
Number of  
machines 

at each stage

Number of jobs

10 12 14 15

M1 = 1
M2 = 2 10(2.8) 10(12.3) 10(585.3) 8(2625.3)
M2 = 3 10(1.2) 10(10.6) 10(725.3) 8(3025.1)
M2 = 4 10(1.1) 10(15.7) 9(663.4) 7(1005.6)

M1 = 2
M2 = 2 10(0.5) 10(6.3) 10(383.3) 9(2006.4)
M2 = 3 10(0.9) 10(15.8) 10(425.6) 10(3523.2)
M2 = 4 10(0.7) 10(13.8) 10(528.9) 9(4019.3)

M1 = 3
M2 = 2 10(0.6) 10(9.5) 10(631.5) 10(1263.4)
M2 = 3 10(2.0) 10(3.1) 10(226.4) 10(1991.6)
M2 = 4 10(1.5) 10(15.3) 10(341.6) 9(2536.1)

M1 = 4
M2 = 2 10(0.9) 10(6.9) 10(163.8) 10(1094.2)
M2 = 3 10(1.6) 10(17.5) 10(512.3) 10(1697.2)
M2 = 4 10(1.3) 10(8.6) 10(226.7) 10(2463.8)

See the footnotes of (a).
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5. Concluding Remarks

The paper considered a two-stage hybrid flow shop 
scheduling problem for the objective of minimizing 
the number of tardy jobs. Unlike the previous re-
search, we focused on general two-stage hybrid 
flow shops in which two or more machines exist 
at both stages and suggested a branch and bound 
algorithm that gives optimal solutions. The methods 
to calculate lower and upper bounds are suggested, 
and two properties that characterize the optimal 
solutions were also derived to reduce the search 
space. Test results of computational experiments 
showed that the B&B algorithm suggested in this 
paper gave the optimal solutions for moderate-sized 
test problems within a reasonable amount of com-
putation time.

This research can be extended in several direc-
tions. First, it is needed to develop more efficient 
algorithms to solve practical-sized problems. To do 
this, it may be necessary to develop heuristic algo-
rithms rather than the optimal algorithm. Second, it 
is worth to consider the problem in which the buf-
fer size between the two stages is finite. Also, to 
make the research more practical, the problem should 
be extended to the systems with more than two 
stages. In this case, the simulation study, together 
with dispatching rules, may be more applicable. 
Finally, the hybrid flow shops with uniform or un-
related parallel machines at each stage can be a 
practical extension. 
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