
Journal of the Korean Institute of Industrial Engineers
Vol. 33, No. 2, pp. 213-220, June 2007.

A Branch and Bound Algorithm for Two-Stage Hybrid Flow Shop
Scheduling : Minimizing the Number of Tardy Jobs

Hyun-Seon Choi․Dong-Ho Lee†*

Department of Industrial Engineering, Hanyang University, Seoul 133-791, Korea

2 단계 혼합흐름공정에서 납기 지연 작업수의 최소화를 위한
분지한계 알고리듬

최현선․이동호

한양 학교 산업공학과

This paper considers a two-stage hybrid flow shop scheduling problem for the objective of minimizing the
number of tardy jobs. Each job is processed through the two production stages in series, each of which has
multiple identical parallel machines. The problem is to determine the allocation and sequence of jobs at each
stage. A branch and bound algorithm that gives the optimal solutions is suggested that incorporates the methods
to obtain the lower and upper bounds. Dominance properties are also suggested to reduce the search space. To
show the performance of the algorithm, computational experiments are done on randomly generated problems,
and the results are reported.

Keywords: Two-stage hybrid flow shop, scheduling, number of tardy jobs, branch and bound

1. Introduction

A hybrid flow shop, alternatively called a flow
shop with multiple processors, is an extended sys-
tem of the ordinary flow shop. The hybrid flow
shop consists of two or more production stages in
series, but there exist one or more parallel ma-
chines at each stage. The parallel machines are
added to each stage of the flow shop for the ob-
jective of increasing productivity and/or flexibility.
That is, it is natural to increase the system ca-
pacity by adding machines at a certain production
stage (Gupta, 1988). The flow of jobs is basically

unidirectional through the serial production stages,
and each job can be processed by one of the par-
allel machines at each stage. There may be finite
buffers to decouple consecutive production stages.
Also, a certain amount of setup time may be re-
quired when changing the product type at each
machine.

This paper considers hybrid flow shop scheduling
which is the problem of allocating jobs to parallel
machines at each stage and sequencing the jobs al-
located to each machine. Note that the two deci-
sion variables are those of parallel machine sched-
uling and flow shop scheduling. Hybrid flow shops
are commonly found in the industries (Huang and

This work was supported by Korea Research Foundation Grant funded by Korean Government (MOEHRD) (KRF-2005-041-D00893). This is
gratefully acknowledged.
†Corresponding author : Dong-Ho Lee, Department of Industrial Engineering, Hanyang University, Sungdong-gu, Seoul 133-791, Korea,

Tel : +82-2-2220-0475, Fax: +82-2-2296-0471, E-mail : leman@hanyang.ac.kr
 Received June 2006; revision received September 2006; accepted October 2006.

214 Hyun-Seon Choi․Dong-Ho Lee

Li, 1998). For example, they can be found in the
electronics industry such as printed circuit board
manufacturing, semiconductor manufacturing, and
lead frame manufacturing (Lee and Kim, 2004, Linn
and Zhang, 1999). Also, a number of traditional
industries, such as food, chemical and steel, have
various types of hybrid flow shops (Tsubone et al.,
1996).

The research articles on hybrid flow shop sched-
uling can be classified using the performance mea-
sures used, i.e., those without due-date such as
makespan and total flow time and those with due-
date such as maximum tardiness, number of tardy
jobs and mean tardiness. (See Linn and Zhang, 1999
for a literature review.) Gupta and Tunc (1991) con-
sider the problem with the objective of minimizing
makespan and suggest heuristic algorithms. Other
heuristics for minimizing makespan are suggested
by Lee and Vairaktarakis (1994), Chen (1995) and
Lee and Park (1999) that consider two-stage hybrid
flow shop. Fouad et al. (1998) consider a three-
stage hybrid flow shop scheduling problem occur-
red in the woodworking industry and suggest heu-
ristic algorithms. Brah and Hunsucker (1991) sug-
gest branch and bound algorithms that minimize
makespan, and later, their lower bounds were im-
proved by Moursli and Pochet (2000). Also, Azizoglu
et al. (2001) consider the problem with the objec-
tive of minimizing total flow time and suggest a
branch and bound algorithm.

Several research articles consider due-date based
measures. Guinet and Solomon (1996) suggest the
list scheduling algorithms for multi-stage hybrid flow
shop scheduling with the objective of minimizing
maximum tardiness. Here, the list scheduling algo-
rithms list the jobs in some order using a priority
rule and assigns them to the machines according to
this order. Gupta and Tunc (1998) consider the two-
stage hybrid flow shop scheduling with the ob-
jective of minimizing the number of tardy jobs and
suggest several heuristic algorithms. Here, a tardy
job is defined as the job whose completion time is
greater than its due date. Recently, Lee and Kim
(2004) considered a two-stage hybrid flow shop
with parallel machines only at the first stage and
suggested a branch and bound algorithm that mini-
mizes total tardiness. Later, Lee et al. (2004) ex-
tended their research to multi-stage hybrid flow shop
and suggested a bottleneck-focused heuristic for the

objective of minimizing total tardiness. In this heu-
ristic, a schedule for the bottleneck stage is first
constructed and then the schedules for the other
stages are constructed based on that for the bott-
leneck.

This paper focuses on a scheduling problem in
two-stage hybrid flow shops with the objective of
minimizing the number of tardy jobs. The objective
considered in this paper is important in many cases
since the cost penalty incurred by a tardy job does
not depend on how late it is, but the fact that it is
late. For example, a late job may cause a customer
to switch to another supplier, especially in the just-
in-time production environment (Ho and Chang, 1995).
As noted in the previous research articles, the pro-
blem considered in this paper is an NP-hard pro-
blem. This can be easily seen from the fact that
the parallel machine scheduling problem that mini-
mizes the number of tardy jobs is NP-hard (Garey
and Johnson, 1979). As stated earlier, the objective
of minimizing the number of tardy jobs is dealt
with by Gupta and Tunc (1998) that considers a
two-stage hybrid flow shop with only one machine
at the first stage. Unlike this, we focus on general
two-stage hybrid flow shops in which two or more
machines exist at each stage. In addition, we sug-
gest a branch and bound algorithm that gives opti-
mal solutions. The methods to obtain the lower and
upper bounds are suggested and also dominance
properties are derived to reduce the solution space.
To show the performance of the algorithm, compu-
tational experiments are performed on randomly
generated problems, and the results are reported.

This paper is organized as follows. In the next
section, the problem considered here is described
in more detail with a mathematical formulation. The
branch and bound algorithm is presented in Section
3, and the results of computational test are repor-
ted in Section 4. Finally, Section 5 concludes the
paper with a short summary and discussions on po-
ssible extensions.

2. Problem Description

Before describing the problem considered in this
paper, we present the structure of the two-stage
hybrid flow shop. As stated earlier, the two-stage

A Branch and Bound Algorithm for Two-Stage Hybrid Flow Shop Scheduling : Minimizing the Number of Tardy Jobs 215

hybrid flow shop consists of two serial stages, al-
ternatively called workstations in the literature, but
there exist one or more identical parallel machines
at each stage. In Figure 1, Mk denotes the number
of machines at stage k, k = 1, 2. Each job consists
of two operations, i.e., the first (second) one is
processed on one of the parallel machines at the
first (second) stage. Here, the operations are proc-
essed sequentially, without overlapping between
stages.

Figure 1. Two-stage hybrid flow shop : a schematic
view

As stated earlier, there are two types of decision
variables in the two-stage hybrid flow shop sched-
uling problem considered in this paper. They are;
(a) allocating jobs to the parallel machines at each
stage and (b) sequencing the jobs allocated to each
machine. The objective is to minimize the number
of tardy jobs, i.e.,

minimize

 ,

where Ti = max{0, Ci - di} and (a) = 1 if a > 0,
and 0 otherwise. Here, Ci and di denote the com-
pletion time and the due date of job i, respectively.
Note that the completion times of jobs depend on
the two decision variables, allocation and sequenc-
ing, and the problem considered here is to de-
termine them for the objective of minimizing the
number of tardy jobs in the general two-stage hy-
brid flow shop.

This paper considers a static and deterministic
scheduling problem. That is, all jobs are ready for
processing at time zero, i.e., zero ready time, and
job descriptors such as processing times and due
dates are deterministic and given in advance. It is

assumed that the parallel machines at each stage
are identical and hence processing time of an oper-
ation at each stage is the same for each of the ma-
chines at that stage. Other assumptions made in the
problem considered here are : (a) no job can be split
or pre-emptied; (b) each machine can process only
one job at a time and each job can be processed
on one machine; (c) machine breakdowns are not
considered; and (d) the buffer capacity between the
two stages is infinite.

The hybrid flow shop scheduling problem consid-
ered in this paper can be formulated as an integer
programming model. First, the notations used are
summarized below.

Parameters
Mk number of identical machines at stage k, k

= 1, 2
di due date of job i, i = 1,…, N
pik processing time of job i at stage k
V large number

Decision variables
xijmk = 1 if job j is processed directly after job

i on machine m at stage k, and 0 other-
wise (x0jmk = 1 if job j is the first job to
be processed on machine m at stage k and
xi0mk = 1 if job i is the last job to be proc-
essed on machine m in stage k.)

cik completion time of job i at stage k

Now, the integer programming model, modified
from that of Guinet and Solomon (1996), is given
as follows.

Minimize

 subject to

 = 1 for all j, k and i ≠ j (1)

 = 1 for all m and k (2)

≠

≠

 = 0 for all h, m and k (3)

 ≥

 ⋅ for all j, k and

Parallel
Machines

Parallel
Machines

Stage 2Stage 1

buffer
n jobs

216 Hyun-Seon Choi․Dong-Ho Lee

i = 0,…, N (4)

 ≥ for all j and k (5)

 for all i (6)

 if Ti > 0 and 0 otherwise for all i (7)

 ∈ for all i, j, k and m (8)

 ≥ for all j and k (9)

 for all j and (10)

The objective function denotes minimizing the
number of tardy jobs, where the tardiness of each
job is specified in constraint (6). Constraint (1) en-
sures that each job is processed once and once on-
ly at each stage. Constraint (2) specifies that each
machine must be assigned to one job at most.
Note that x0jmk = 1 if job j is the first job to be pro-
cessed on machine m at stage k. Similarly, xi0mk = 1
if job i is the last job to be processed on machine
m in stage k. Constraints (3) ensure that each job
has a predecessor and a successor on its machine.
The job completion time at each machine is repre-
sented by constraints (4) and (5). In other words,
constraint (4) implies that if job j is processed di-
rectly after job i on machine m at stage k, the com-
pletion time of job j at stage k is larger than or
equal to the sum of the completion time of job i
at stage k and the processing time of job j at stage
k. Also, constraint (5) implies that the completion
time of job j at stage k is larger than or equal to
the sum of the completion time of job j at stage k -
1 and the processing time of job j at stage k. Con-
straints (7) specify the number of tardy jobs. Final-
ly, the other constraints (8), (9) and constraints (10)
are the conditions on the decision variables.

3. Branch and Bound Algorithm

This section presents the branch and bound
(B&B) algorithm suggested in this paper. First, we
present the branching scheme that generates all
possible schedules. Then, the methods to obtain the
lower and upper bounds are suggested. As in the
ordinary B&B algorithm, each node of the B&B
tree can be deleted from further consideration
(fathomed) if the lower bound at the node is great-

er than or equal to the incumbent solution value,
i.e., the smallest upper bound of all nodes obtained
so far. Finally, the dominance properties are sug-
gested to reduce the search space.

3.1 Branching
To generate all possible solutions, we adopt the

idea of Azizoglu et al. (2001) that consider the
problem with minimizing total flow time. The en-
tire B&B tree consists of two subtrees in series,
each of which represents N! orderings of jobs at
each stage of the hybrid flow shop. In the first
subtree, N nodes are branched from the root node
(level 1), N - 1 nodes from each node at the second
level, and so on. Also, the second subtree starts
from each of the leaf nodes of the first subtree.
That is, N nodes are branched at level N + 1, N - 1
nodes at the level N + 2, and so on. In this way,
we can generate (N!)2 orderings of jobs.

Each node of the first (second) subtree corre-
sponds to a partial schedule at the first (second)
stage. More specifically, at each node, a set of jobs
can be specified by going back on the path from
that node toward the root node, and each of these
jobs are allocated and sequenced to the earlier av-
ailable machine in sequence. In this way, we can
generate all possible allocation and sequence at
each stage of the hybrid flow shop since we con-
sider the regular measure of performance. See
Azizoglu et al. (2001) for more details on how the

1 2 3

2 3

3 2

21 3

3

3

2

2

subtree

for the second stage

level 1

level 2

level 3

subtree
for the first stage

root node

Figure 2. Branch and bound tree: example

A Branch and Bound Algorithm for Two-Stage Hybrid Flow Shop Scheduling : Minimizing the Number of Tardy Jobs 217

B&B tree explained here can generate all feasible
schedules. <Figure 2> shows an example of the
B&B tree for a problem with 3 jobs. It can be
seen from the figure that this method determines
the job schedule from the first to the second stage.

For node selection (or branching), the depth-first
rule is used in this study. In this rule, if the cur-
rent node is not fathomed, the next node to be
considered is one of its child node, i.e., the node
with the smallest index.

3.2 Bounding
3.2.1 Obtaining the lower bound
The lower bound suggested in this paper is com-

puted at each node of the B&B tree. As stated
earlier, each node of the B&B tree corresponds to
a partial schedule and the lower bound is computed
by estimating the smallest (and also infeasible) com-
pletion time of each job at the second stage. To
do this, we use the partial schedule and the jobs
not included in the partial schedule. Let PSl denote
the set of jobs included in the partial schedule at
node l.

Two cases are considered in the computation of
the lower bound.

Case 1 : When the current node l is at the first
subtree

In this case, the lower bound at node l is calcu-
lated by

 NT1 + NT2,

where NT1 is the number of tardy jobs calculated
for those in the partial schedule PSl and NT2 is the
number of tardy jobs derived from those not in
PSl.

First, NT1 is calculated by estimating the smallest
(but infeasible) completion time of each job in PSl
at the second stage. That is, the smallest com-
pletion time of each job can be set as

where φT is the ready time of the earliest available
machine at the second stage and cik, as defined
earlier, is the completion time of job i at stage k.
Here, the earliest available machine at the second
stage implies the one with the smallest completion

time of the last scheduled job among those in PSl.
Note that the smallest completion time of a job
given above is always smaller than the completion
time of that job in the optimal schedule. This is
because the delay times are ignored when calculat-
ing NT1. Then, the number of tardy jobs NT1 can
be calculated by comparing the smallest completion
time and due date of each job in PSl. That is,

∈
 ,

where Ti = max{0, ci2 - di} for i∈PSl.
Second, NT2 is calculated by aggregating the

two-stage hybrid flow shop scheduling problem in-
to the single machine problem that minimizes the
number of tardy jobs. In this method, the process-
ing time of job i ∉PSl at the second stage is
modified as

′ ,
i.e., job splitting is allowed, and the corresponding
single machine scheduling problem is solved using
the optimal algorithm of Moore (1968). Then, NT2
is set to the number of tardy jobs obtained from
the single machine problem. That is,

∉

 ,

where Ti = max{0, ci - di} for i ∉PSl. Note that
ci is the completion time of job i obtained by the
algorithm of Moore (1968). Note that NT2 is a val-
id lower bound for the jobs not in PSl since it is
assumed that each unscheduled job is completed at
the first stage before its release time at the second
stage. Also, the single machine scheduling problem
is solved using the modified processing time, i.e.,
processing time divided by the number of parallel
machines at the second stage.

Case 2 : When the current node l is at the second
subtree

Like the method of case 1, the lower bound in
this case is calculated by

NT1 + NT2.

Here, NT1 is calculated using the method of the
first case, i.e., estimating the smallest (but in-
feasible) completion time of each job at the second

218 Hyun-Seon Choi․Dong-Ho Lee

stage. More formally,

∈
 ,

where Ti = max{0, ci2 - di} for i∈ PSl. Here, ci2 is
the completion time of job i at the second stage
and can be obtained directly from the partial sche-
dule. On the other hand, NT2 for i ∉ PSl is calcu-
lated by estimating the completion time as

 .

Note that in this case, the waiting time of un-
scheduled jobs at the second stage, i.e., max{0, ci1

- φT}, is ignored. Therefore, NT2 is a valid lower
bound for the jobs not in PSl.

3.2.2 Obtaining the upper bound
The initial upper bound, i.e., an initial feasible

solution value, at the root node of the B&B tree is
obtained using the list scheduling approach. As
stated earlier, the list scheduling method lists the
jobs in some order using a priority rule and as-
signs them to the machines according to this order.
In this paper, we use two priority rules, EDD (ear-
liest due date) and MST (minimum slack time).

The EDD rule is used after modifying the due
date of each job as

 ′ .
Then, the jobs are ordered in the non-decreasing

order of ′ , and they are allocated to machines ac-
cording to this order. Note that each job is allo-
cated to the earliest available machine as in the bran-
ching scheme explained earlier. Also, the MST rule
is the same as the EDD rule except that the jobs
are ordered according to the non-decreasing order
of slack time. Here, the slack time is defined as

 .

Now, the intial upper bound is set to the mini-
mum of those obtained by the two rules and up-
dated whenever a better (feasible) solution is ob-
tained at each leaf node of the B&B tree.

3.3 Dominance properties
To reduce the search space of our B&B algo-

rithm, two properties are derived in this paper. The
first property, which is given blow and its proof is

omitted here since it is given in Azizoglu and
Kirca (1998), specifies the condition that a job should
be positioned last at the first stage of the hybrid
flow shop. That is, a job satisfying the condition of
proposition 1 is never tardy in any positions and
hence can be sequenced last.

Proposition 1. There exists an optimal schedule in
which job w is processed at the last position on
any one of the machines at the first stage if

′≥

 ,
where ′= - .

The second property specifies the condition that
partial schedule σ i is dominated by σ j, where σ i
is the partial schedule obtained by appending job i
(not in σ) to the end of partial schedule σ. From
this property, we can see that job i should be posi-
tioned last at the first stage of the hybrid flow
shop.

Proposition 2. For any partial schedule σ at the
first stage, σ i is dominated by σ j if

pi1 > pj1 and φT + pi1 + pi2 > di,

where i and j denote indices for the (unscheduled)
jobs not in partial schedule σ and φT is the ready
time of the earliest available machine correspond-
ing to the partial schedule σ.

Proof. Let c(σ j)1 denote the completion time of
job j of partial schedule σ j at the first stage. Two
cases can be considered.

Case 1 : c(σ j)1 + pj2 > dj

In this case, jobs i and j are both tardy
jobs at the first stage since φT + pi1 + pi2 >
di and c(σ j)1 + pj2 > dj. Hence, the num-
ber of tardy jobs of partial schedule σ i is
the same as that of σ j.

Case 2 : c(σ j)1 + pj2 ≦ dj

In this case, job j may not be a tardy job
and hence it is better to position job i to
the last position since pi1 > pj1. In other
words, the unscheduled jobs can be moved
earlier, which results that the number of
tardy jobs of partial schedule σ j is less
than or equal to that of σ i.

A Branch and Bound Algorithm for Two-Stage Hybrid Flow Shop Scheduling : Minimizing the Number of Tardy Jobs 219

Therefore, the number of tardy jobs for partial
schedule σ j is less than that of σ i. This com-
pletes the proof.

4. Computational Experiments

To show the performance of the B&B algorithm
suggested in this paper, computational tests were
done on randomly generated test problems, and the
results are reported in this section. The algorithm
was tested with respect to two performance measures.
They are the number of problems that the B&B al-
gorithm gave the optimal solutions within 5000
seconds and CPU seconds. Here, the time limit was
set because the B&B algorithm may not give the
optimal solutions for large-sized test problems. The
algorithm was coded in C++ and the test was per-
formed on a workstation with an Intel Xeon pro-
cessor operating at 3.20 GHz clock speed.

For the test, 960 problems were generated ran-
domly, i.e., 10 problems for each of 96 combina-
tions of the number of machines (1, 2, 3 and 4 at
the first stage and 2, 3 and 4 at the second stage),
four levels of the number of jobs (10, 12, 14 and
15), and two levels of the due date tightness (loose,
tight). The processing times were generated from
DU(10, 40), where DU(a, b) is the discrete uni-
form distribution with range [a, b]. Due dates were
generated using the method of Gupta (1998). That
is, they were generated from DU(p , p), where α
and (>) were set to 0.6 (0.2) and 0.8 (0.4)
for the case of loose (tight) due dates and p was
set as

.

Test results are summarized in <Table 1> that
shows the number of problems that the B&B algo-
rithm gave the optimal solutions within 5000 sec-
onds and average CPU seconds (in parenthesis). It
can be seen from the table that the B&B algorithm
gives the optimal solutions for most test problems.
In fact, the B&B algorithm gave the optimal sol-
utions up to the problems with 14 jobs for loose
due dates and 12 jobs for tight due dates. Also,
we can see that the number of machines at each

stage plays an important role in the problem
complexity. That is, the test problems having rela-
tively large number of machines at the first stage
were easier to solve since Proposition 2 considers
the parallel machines at the first stage. Also, the
computation times for the problems with loose due
dates are smaller than those for the problems with
tight due dates. However, the computation times of
both cases increase significantly when the number
of jobs increases due to the inherent complexity of
the problem.

Table 1. Performance of the algorithm
(a) Cases of loose due dates

Number of
machines

at each stage

Number of jobs

10 12 14 15

M1 = 1
M2 = 2 10(0.5)* 10(8.4) 10(105.3) 9(2269.4)
M2 = 3 10(0.3) 10(10.6) 10(253.1) 10(1006.9)
M2 = 4 10(0.4) 10(14.1) 10(193.7) 9(3014.8)

M1 = 2
M2 = 2 10(0.3) 10(5.3) 10(85.2) 10(956.4)
M2 = 3 10(0.2) 10(16.2) 10(140.9) 10(1009.1)
M2 = 4 10(0.4) 10(7.4) 10(78.6) 10(2983.4)

M1 = 3
M2 = 2 10(0.2) 10(6.6) 10(133.5) 10(1096.4)
M2 = 3 10(0.5) 10(8.4) 10(91.0) 10(3089.3)
M2 = 4 10(0.3) 10(18.3) 10(156.2) 10(2040.6)

M1 = 4
M2 = 2 10(0.2) 10(8.2) 10(163.1) 10(563.4)
M2 = 3 10(0.3) 10(3.2) 10(289.4) 10(1902.3)
M2 = 4 10(0.2) 10(5.1) 10(170.4) 10(2634.5)

* number of problems that the B&B algorithm gave the optimal
solutions out of 10 problems and CPU seconds (in parenthesis)

(b) Cases of tight due dates
Number of
machines

at each stage

Number of jobs

10 12 14 15

M1 = 1
M2 = 2 10(2.8) 10(12.3) 10(585.3) 8(2625.3)
M2 = 3 10(1.2) 10(10.6) 10(725.3) 8(3025.1)
M2 = 4 10(1.1) 10(15.7) 9(663.4) 7(1005.6)

M1 = 2
M2 = 2 10(0.5) 10(6.3) 10(383.3) 9(2006.4)
M2 = 3 10(0.9) 10(15.8) 10(425.6) 10(3523.2)
M2 = 4 10(0.7) 10(13.8) 10(528.9) 9(4019.3)

M1 = 3
M2 = 2 10(0.6) 10(9.5) 10(631.5) 10(1263.4)
M2 = 3 10(2.0) 10(3.1) 10(226.4) 10(1991.6)
M2 = 4 10(1.5) 10(15.3) 10(341.6) 9(2536.1)

M1 = 4
M2 = 2 10(0.9) 10(6.9) 10(163.8) 10(1094.2)
M2 = 3 10(1.6) 10(17.5) 10(512.3) 10(1697.2)
M2 = 4 10(1.3) 10(8.6) 10(226.7) 10(2463.8)

See the footnotes of (a).

220 Hyun-Seon Choi․Dong-Ho Lee

5. Concluding Remarks

The paper considered a two-stage hybrid flow shop
scheduling problem for the objective of minimizing
the number of tardy jobs. Unlike the previous re-
search, we focused on general two-stage hybrid
flow shops in which two or more machines exist
at both stages and suggested a branch and bound
algorithm that gives optimal solutions. The methods
to calculate lower and upper bounds are suggested,
and two properties that characterize the optimal
solutions were also derived to reduce the search
space. Test results of computational experiments
showed that the B&B algorithm suggested in this
paper gave the optimal solutions for moderate-sized
test problems within a reasonable amount of com-
putation time.

This research can be extended in several direc-
tions. First, it is needed to develop more efficient
algorithms to solve practical-sized problems. To do
this, it may be necessary to develop heuristic algo-
rithms rather than the optimal algorithm. Second, it
is worth to consider the problem in which the buf-
fer size between the two stages is finite. Also, to
make the research more practical, the problem should
be extended to the systems with more than two
stages. In this case, the simulation study, together
with dispatching rules, may be more applicable.
Finally, the hybrid flow shops with uniform or un-
related parallel machines at each stage can be a
practical extension.

References

Azizoglu, M., Cakmak, E., and Kondakci, S. (2001),
A flexible flow shop problem with total flow time
minimization, European Journal of Operational
Research, 132, 528-538.

Azizoglu, M. and Kirca, O. (1998), Tardiness mini-
mization on parallel machines, International
Journal of Production Economics, 55, 163-168.

Brah, S. A. and Hunsucker, J. L. (1991), Branch
and bound algorithm for the flow shop with
multiple processors, European Journal of Operational
Research, 51, 88-99.

Chen, B. (1995), Analysis of classes of heuristics
for scheduling a two-stage flow shop with paral-
lel machines at on stage, Journal of the Opera-
tional Research Society, 46, 231-244.

Fouad, R., Abdelhakim, A. and Salah, E. E. (1998),

A hybrid three-stage flowshop problem Efficient
heuristics to minimize makespan, European Journal
of Operational Research, 109, 321-329.

Garey, M. R. and Johnson, D. S. (1979), Computers
and Intractability : A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company.

Guinet, A. G. P. and Solomon, M. M. (1996),
Scheduling hybrid flowshops to minimize max-
imum tardiness or maximum completion time,
International Journal of Production Research, 34,
1643-1654.

Gupta, J. N. D. (1988), Two-stage hybrid flow
shop scheduling problem, Journal of the Opera-
tional Research Society, 39, 359-364.

Gupta, J. N. D. and Tunc, E. A. (1991), Schedu-
ling for a two-stage hybrid flowshop with paral-
lel machines at the second stage, International
Journal of Production Research, 29, 1480-1502.

Gupta, J. N. D. and Tunc, E. A. (1998), Minimi-
zing tardy jobs in a two-stage hybrid flowshop,
International Journal of Production Research, 36,
2397-2417.

Ho, J. C. and Chang, Y-L. (1995), Minimizing the
number of tardy jobs for m parallel machines,
European Journal of Operational Research, 84,
343-355.

Huang, W. and Li, W. (1998), A two-stage hybrid
flowshop with uniform machines and setup times,
Mathematical and Computer Modelling, 27, 27-45.

Lee, C. Y. and Vairaktarakis, G. L. (1994), Minimi-
zing makespan in hybrid flow shops, Operations
Research Letters, 16, 149-158.

Lee, G.-C. and Kim, Y.-D. (2004), A branch-and-
bound algorithm for a two-stage hybrid flow shop
scheduling problem minimizing total tardiness,
International Journal of Production Research, 42,
4731-4743.

Lee, G.-C., Kim, Y.-D. and Choi, S.-W. (2004),
Bottleneck-focused scheduling for a hybrid flow
shop, International Journal of Production Research,
42, 165-181.

Lee, J.-S. and Park, S.-H. (1999), Scheduling heu-
ristics for a two-stage hybrid flowshop with non-
identical parallel machines, Journal of the Korean
Institute of Industrial Engineers, 25, 254-265.

Linn, R. and Zhang, W. (1999), Hybrid flow shop
scheduling, Computers and Industrial Engineering,
37, 57-61.

Moore, J. M. (1968), An n-job, one-machine se-
quencing algorithm for minimizing the number
of jobs, Management Science, 15, 102-109.

Mourisli, O. and Pochet, Y. (2000), A branch-and-
bound algorithm for the hybrid flow shop, Inte-
rnational Journal of Production Economics, 64,
113-125.

Tsubone, H., Ohba, M. and Uetake, T. (1996), The
impact of lot sizing and sequencing on manu-
facturing performance in a two-stage hybrid flow
shop, International Journal of Production Research,
34, 3037-3053.

