• Title/Summary/Keyword: flow model

Search Result 13,037, Processing Time 0.053 seconds

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF

Numerical Studies on Combined VM Loading and Eccentricity Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-모멘트 조합하중 지지력과 편심계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.59-72
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - moment loading capacity was studied by three-dimensional numerical modelling. Mohr-Coulomb plasticity model with the associated flow-rule was used for the soil. After comparing the results of the swipe loading method, which can construct the interaction diagram with smaller number of analyses, and those of the probe loading method, which can simulate the load-paths in the conventional load tests, it was found that both loading methods give similar results. Conventional methods based on the effective width or area concept and the results by eccentricity factor ($e_{\gamma}$) were reviewed. The results by numerical modelling of this study were compared with those of previous studies. The combined loading capacity for vertical (V) - moment (M) loading was barely affected by the internal friction angle. It was found that the effective width concept expressed in the form of eccentricity factor can be applied to circular footings. The numerical results of this study were smaller than the previous experimental results and the differences between them increased with the eccentricity and moment load. Discussions are made on the reason of the disparities between the numerical and experimental results, and the areas for further researches are mentioned.

Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace (순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구)

  • Choi, Wook;Jo, Hang-Dae;Choi, Won-Kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.857-864
    • /
    • 2011
  • Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on $SO_2$ removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions represented by high concentrations of $CO_2$ and $SO_2$ formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, $CO_2$ concentration, $SO_2$ concentration, Ca/S ratio and humidity on $SO_2$ removal efficiency were investigated experimentally. $SO_2$ removal efficiency increased with reaction temperature up to 1,200 due to promoted calcination of limestone reagent particles. And $SO_2$ removal efficiency increased with $SO_2$ concentrations and the humidity of the bulk gas. The increase of $SO_2$ removal efficiency with $CO_2$ concentrations showed that $SO_2$ removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions. From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > $O_2$ concentration > reaction temperature > $SO_2$ concentration > $CO_2$ concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst (철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구)

  • Yang, Jung-Il;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.358-364
    • /
    • 2012
  • The kinetics of the Fischer-Tropsch synthesis and water gas shift reactions over a precipitated iron catalyst were studied in a 5 channel fixed-bed reactor. Experimental conditions were changed as follows: synthesis gas $H_2$/CO feed ratios of 0.5~2, reactants flow rate of 60~80 ml/min, and reaction temperature of $255{\sim}275^{\circ}C$ at a constant pressure of 1.5 MPa. The reaction rate of Fischer-Tropsch synthesis was calculated from Eley-Rideal mechanism in which the rate-determining step was the formation of the monomer species (methylene) by hydrogenation of associatively adsorbed CO. Whereas water gas shift reaction rate was determined by the formation of a formate intermediate species as the rate-determining step. As a result, the reaction rates of Fischer-Tropsch synthesis for the hydrocarbon formation and water gas shift for the $CO_2$ production were in good agreement with the experimental values, respectively. Therefore, the reaction rates ($r_{FT}$, $r_{WGS}$, $-r_{CO}$) derived from the reaction mechanisms showed good agreement both with experimental values and with some kinetic models from literature.

Implementation of a Data Processing Method to Enhance the Quality and Support the What-If Analysis for Traffic History Data (교통이력 데이터의 품질 개선과 What-If 분석을 위한 자료처리 기법의 구현)

  • Lee, Min-Soo;Cheong, Su-Jeong;Choi, Ok-Ju;Meang, Bo-Yeon
    • The KIPS Transactions:PartD
    • /
    • v.17D no.2
    • /
    • pp.87-102
    • /
    • 2010
  • A vast amount of traffic data is produced every day from detection devices but this data includes a considerable amount of errors and missing values. Moreover, this information is periodically deleted before it could be used as important analysis information. Therefore, this paper discusses the implementation of an integrated traffic history database system that continuously stores the traffic data as a multidimensional model and increases the validity and completeness of the data via a flow of processing steps, and provides a what-if analysis function. The implemented system provides various techniques to correct errors and missing data patterns, and a what-if analysis function that enables the analysis of results under various conditions by allowing the flexible definition of various process related environment variables and combinations of the processing flows. Such what-if analysis functions dramatically increase the usability of traffic data but are not provided by other traffic data systems. Experimantal results for cleaning the traffic history data showed that it provides superior performance in terms of validity and completeness.

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

Immuno-chromatographic Analysis for HPV-16 and 18 E7 Proteins as a Biomarker of Cervical Cancer Caused by Human Papillomavirus

  • Kim, Joo-Ho;Cho, Il-Hoon;Seo, Sung-Min;Kim, Ji-Sook;Oh, Kyu-Ha;Kang, Heun-Soo;Kim, In-Gyu;Paek, Se-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2999-3005
    • /
    • 2009
  • Among the more than 120 different types of human papillomavirus (HPV), types 16 and 18 have been known to be high risk agents that cause cervical cancer. We examined, in an immuno-chromatographic analysis, the potential of using the early gene product, E7 protein, as a diagnostic marker of cervical cancer caused by HPV. We developed monoclonal antibodies specific to HPV-16 and 18 E7 proteins that were produced from bacterial cells using gene recombinant technology. For each E7 protein, the optimal antibody pair was selected using the immuno-chromatographic sandwichtype binding system based on the lateral flow through membrane pores. Under these conditions, this rapid testing assay had a detection capability as low as 2 ng/mL of E7 protein. Furthermore, since viral analysis required the host cell to be lysed using chemicals such as detergents, it was possible that the E7 protein was structurally damaged during this process, which would result in a decrease in detection sensitivity. Therefore, we examined the detrimental effects caused by different detergents on the E7 protein using HeLa cells as the host. In these experiments, we found that the damage caused by the detergent, nonylphenylpolyethylene glycol (NP-40), was minimal relative to Triton X-100 commonly used for the cell lysis. Temperature also affected the stability of the E7 protein, and we found that the E7 protein was stabilized at 4$^{\circ}C$ for about 2 h, which was 4 times longer than at room temperature. Finally, a HPV-infected cervical cancer cell line, which was used as a real sample model, was treated using the optimized conditions and the presence of E7 proteins were analyzed by immuno-chromatography. The results of this experiment demonstrated that this rapid test could specifically detect HPV-infected samples.

Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump (GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화)

  • Lee, Jin Woo;Shin, Kwang Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • In this paper, we performed the design optimization dual-shell and tube heat exchanger on exhaust waste heat recovery for gas heat pump using CFD and RSM. CFD analysis is useful to design the complex structure such as double shell and tube heat exchanger. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such dual-shell and tube heat exchanger for GHP, the computational time can become overwhelming. CFD is powerful but it takes a lot of time for complex structure. Therefore, the CFD analysis is minimized by the optimization using the RSM method. As a result, the number of baffle and tube are optimized by 6 baffles and 25 tubes for heat transfer and flow friction. And then pressure drop and heat transfer is improved about 12.2%. We confirm the design optimization using CFD and RSM is useful on complex structure of heat exchanger.

CFD Explanation and Verification of Multi Inner Stage Cyclone for The Particle Removal (미세입자 제거를 위한 Multi Inner Stage Cyclone의 CFD 해석 및 검증)

  • Lee, Sang Jun;Kim, Chun-Lee;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.149-156
    • /
    • 2013
  • In this paper, Commercial program, STAR-CCM+, was used for computer simulation. And also Multi Inner Stage(MIS) cyclone which especially designed for the real experiments of particle removal efficiency. Under negative pressure condition of outlet, computer simulation was performed to predict the removal efficiency for $5{\mu}m$ and $10{\mu}m$ particles by using a turbulence model and lagrangian method. The simulation results are 55.7% and 64.1% for $5{\mu}m$ and $10{\mu}m$ particles, respectively. To compare the simulation results with the actual test of MIS cyclone, we generated the $SiO_2$ particles by heat reactor. Although removal efficiency of actual tests is 63~76% at different flow rate, the size of $SiO_2$ particles which confirmed by SEM(scanning electron microscope) and WAPS(wide range aerosol particle spectrometer) is too small(15~30nm) to compare each results. And so the alternative experiments were performed by using commercial alumina particles ($5{\mu}m$, $10{\mu}m$ and $20{\mu}m$). It was shown that the actual removal efficiency, 76~95%, from MIS cyclone is higher than simulated one.

Development of Integrated Design Methodology for Relational Database Application -Focusing on Object-Oriented Analysis and Design Methodology- (관계형 데이터베이스 응용시스템을 위한 통합 설계방법론 개발 -객체지향 분석.설계 방법론을 중심으로-)

  • Joo, Kyung-Soo;Jho, Do-Hyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.25-34
    • /
    • 2011
  • In this paper we present an integrated design methodology for relational database based on object-oriented analysis and design. The integrated design methodology is based on business profile and has six phases. In the first phase, business use cases are identified and described by macroactivity diagrams and then the macroactivity diagrams are transformed to detailed business activity diagrams by using objects, object flows and business worker's responsibilities. In the third phase, the detailed business activity diagrams are transformed to business class diagrams that describe the static structure of the entire business system based on detailed business activity diagrams. In the four phase, the business class diagrams are transformed to class diagrams that represent the initial conceptual model of the target relational database. In the five phase, we add additional transformations on the class diagrams with generalization and specialization of associations, roles, activities, additional classes and redundant associations. Eventually, the final class diagrams are transformed to relational database schema. The methodology presented in this paper by applying that proposal for organic connection between object-oriented analysis and design methodology and relational database design methodology. And it will be able to deal with integration management. By the integrated design methodology, we can make more easily software systems based on relational database. In the case study, proposal integrated design methodology applied for a visa issuing system.