DOI QR코드

DOI QR Code

Numerical Studies on Combined VM Loading and Eccentricity Factor of Circular Footings on Sand

모래지반에서 원형기초의 수직-모멘트 조합하중 지지력과 편심계수에 대한 수치해석 연구

  • 김동준 (현대건설(주) 연구개발본부) ;
  • 윤준웅 (현대건설(주) 연구개발본부) ;
  • 지성현 (현대건설(주) 연구개발본부) ;
  • 추연욱 (국립공주대학교 건설환경공학부)
  • Received : 2014.02.04
  • Accepted : 2014.03.13
  • Published : 2014.03.31

Abstract

For circular rigid footings with a rough base on sand, combined vertical - moment loading capacity was studied by three-dimensional numerical modelling. Mohr-Coulomb plasticity model with the associated flow-rule was used for the soil. After comparing the results of the swipe loading method, which can construct the interaction diagram with smaller number of analyses, and those of the probe loading method, which can simulate the load-paths in the conventional load tests, it was found that both loading methods give similar results. Conventional methods based on the effective width or area concept and the results by eccentricity factor ($e_{\gamma}$) were reviewed. The results by numerical modelling of this study were compared with those of previous studies. The combined loading capacity for vertical (V) - moment (M) loading was barely affected by the internal friction angle. It was found that the effective width concept expressed in the form of eccentricity factor can be applied to circular footings. The numerical results of this study were smaller than the previous experimental results and the differences between them increased with the eccentricity and moment load. Discussions are made on the reason of the disparities between the numerical and experimental results, and the areas for further researches are mentioned.

모래지반 표면에 위치한 강체 원형기초를 대상으로 수치해석을 통하여 수직-모멘트 조합하중 조건에서의 지지력을 구하였다. 지반은 Mohr-Coulomb 소성모델을 이용하여 모델링하였으며 관련흐름법칙을 적용하였고, 거친 기초 바닥면 조건에 대하여 검토하였다. 적은 수의 해석으로 조합하중 상관도를 산출할 수 있는 swipe 재하 방법과 통상적인 재하실험에서 적용되는 probe 재하 방법을 적용하여 비교한 결과, 두 방법은 유사한 결과를 나타내었다. 모멘트하중을 고려하기 위하여 전통적으로 사용되는 유효폭 및 유효면적 개념을 사용한 결과와 편심계수($e_{\gamma}$)를 사용한 방법들을 비교하였으며, 기존의 제안식들과 수치모델링으로 구해진 본 연구의 결과를 비교하였다. 수직-모멘트 조합하중 지지력의 내부마찰각에 따른 변화는 미미한 것으로 나타났으며, 유효폭 개념은 편심계수의 형태로 변환하여 원형기초에도 그대로 적용이 가능한 것으로 나타났다. 본 연구의 수치모델링 결과는 기존의 실험에 기반한 결과들에 비해 다소 작은 값을 주는 것으로 나타났으며, 편심 및 모멘트하중이 증가할수록 그 차이는 증가하였다. 수치모델링과 실험 결과가 차이를 나타내는 요인과 향후 연구 방향에 대하여 고찰하였다.

Keywords

References

  1. API RP 2GEO (2011), Recommended Practice for Geotechnical Foundation Design Consideration, American Petroleum Institute, Washington, DC.
  2. Bienen, B., Byrne, B. W., Houlsby, G. T., and Cassidy, M. J. (2006), "Investigating six-degree-of-freedom loading of shallow foundations on sand", Geotechnique, Vol.56, No.6, pp.367-380. https://doi.org/10.1680/geot.2006.56.6.367
  3. Brinch Hansen, J. (1970), "A Revised and Extended Formula for Bearing Capacity, Akademiet for de Tekniske Videnskaber", Geoteknisk Institut, Bullentin No. 28, Copenhagen, pp.5-11.
  4. Butterfield, R. and Gottardi, G. (1994), "A complete three-dimensional failure envelope for shallow footings on sand", Geotechnique, Vol. 44, No.1, pp.181-184. https://doi.org/10.1680/geot.1994.44.1.181
  5. Butterfîeld, R. and Gottardi, G. (2003), "Determination of yield curves for shallow foundations by swipe testing", In International symposium on shallow foundations, pp.111-118.
  6. Butterfîeld, R., Houlsby, G. T., and Gottardi, G. (1997), "Standardized sign conventions and notation for generally loaded foundations", Geotechnique, Vol.47, No.5, pp.1051-1054. https://doi.org/10.1680/geot.1997.47.5.1051
  7. Byrne, B. W. and Houlsby, G. T. (2003), "Foundations for offshore wind turbines", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1813), pp.2909-2930. https://doi.org/10.1098/rsta.2003.1286
  8. Das, B. M. (2011), Foundation Engineering, Cenage Learning.
  9. De Beer, E. E. (1970), Experimental determination of the shape factors and the bearing capacity factors of sand, Geotechnique, Vol.20, No.4, pp.387-411. https://doi.org/10.1680/geot.1970.20.4.387
  10. DNV-OS-J101 (2013), Design of Offshore Wind Turbine Structures, Det Norske Veritas AS.
  11. Gottardi, G. and Butterfield, R. (1993), "On the bearing capacity of surface footings on sand under general planar load", Soils and Foundations, Vol.33, No.3, pp.68-79. https://doi.org/10.3208/sandf1972.33.3_68
  12. Gottardi, G., Houlsby, G. T. and Butterfield, R. (1999), "The plastic response of circular footings on sand under general planar loading", Geotechnique, Vol.50, No.4, pp.117-129.
  13. Ingra, T. S. and Baecher, G. B. (1983), "Uncertainty in Bearing Capacity of Sands", Journal of Geotechnical and Geoenvironmental Engineering, Vol.109, No.7, pp.899-914. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:7(899)
  14. Itasca Consulting Group Inc. (2011), FLAC, Fast Lagrangian analysis of continua, Version 7, Minneapolis, USA.
  15. Kulhawy, F. H. and Mayne, P. W. (1990). Manual on estimating soil properties for foundation design (No. EPRI-EL-6800), Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group.
  16. Loukidis, D., Chakraborty, T., and Salgado, R. (2008), "Bearing capacity of strip footings on purely frictional soil under eccentric and inclined loads", Canadian Geotechnical Journal, Vol.45, No.6, pp.768-787. https://doi.org/10.1139/T08-015
  17. Martin, C. M. (1994), Physical and Numerical Modelling of Offshore Foundations under Combined Loads, Ph.D. Thesis, University of Oxford.
  18. Martin, C. M. (2005), "Exact bearing capacity calculations using the method of characteristics", Proc. 11th IACMAG, Vol. 4, Turin, pp.441-450.
  19. Meyerhof, G. G. (1953), "The Bearing Capacity of Foundations under Eccentric and Inclined Loads", Proc. 3rd Int. Conf. on Soil Mechanics and Foundation Engineering, Vol.1, Zurich, pp.440-445.
  20. Meyerhof, G. G. (1963), "Some recent research on the bearing capacity of foundations", Canadian Geotechnical Journal, Vol.1, No.1, pp.16-26. https://doi.org/10.1139/t63-003
  21. Paolucci, R. and Pecker, A. (1997), "Seismic Bearing Capacity of Shallow Strip Foundations on Dry Soils", Soils and Foundations, Vol.37, No.3, pp.95-105. https://doi.org/10.3208/sandf.37.3_95
  22. Perau, E. W. (1997), "Bearing capacity of shallow foundations", Soils and foundations, Vol.37, No.4, pp.77-83. https://doi.org/10.3208/sandf.37.4_77
  23. Randolph, M. and Gourvenec, M. R. S. (2011), Offshore geotechnical engineering, Taylor & Francis.
  24. Taiebat, H.A. and Carter, J.P. (2003), "Contact between soil and circular foundations under eccentric loading", Proc. 2nd MIT Conf. Computational Fluid and Solid Mechanics, Mass., pp.674-677.
  25. Tan, F. S. C. (1990), Centrifuge and Theoretical Modeling of Conical Footings on Sand, Ph.D. Thesis. Cambridge University
  26. Terzaghi, K. (1943), Theoretical Soil Mechanics, John wiley & Sons, New York.

Cited by

  1. Behavior and Critical Failure Modes of Strip Foundations on Slopes under Seismic and Structural Loading vol.19, pp.6, 2014, https://doi.org/10.1061/(asce)gm.1943-5622.0001427