• 제목/요약/키워드: flow angle

검색결과 2,898건 처리시간 0.031초

경사면상의 층류 세류유동 특성 (Flow Characteristics of a Laminar Rivulet Down an Inclined Surface)

  • 김병주
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.1035-1042
    • /
    • 2005
  • In the present study, the principle of minimum energy is employed to configure the shape of rivulet flowing down an inclined surface. The profile of laminar rivulet is determined by numerical integration. The maximum center thickness, which corresponds to the minimum thickness of falling film, is found to exist regardless of liquid flow rate and is compared with the analytical and experimental data. At small liquid flow rate the center thickness of rivulet and its width increase almost linearly with flow rate. Once the center thickness of rivulet becomes very close to its maximum value, its growth rate retards abruptly. However the width of rivulet increases proportionally to the liquid flow rate and most part of its free surface is as flat as that of stable film. The growth rate of rivulet thickness with respect to liquid flow rate becomes larger at bigger contact angle. The width of rivulet increases rapidly with its flow rate especially at small contact angle, As the liquid-vapor interfacial shear stress increases, the center thickness of rivulet decreases with its flow rate, which is remarkable at small contact angle. However the effect of interfacial shear stress on the width of rivulet is almost negligible.

정밀제어용 버터플라이 밸브의 유동특성에 관한 연구 (STUDY ON FLOW CHARACTERISTICS FOR PRECISION CONTROL BUTTERFLY VALVE)

  • 박송묵;최훈기;유근종
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.21-26
    • /
    • 2014
  • Butterfly valve is a valve that controls fluid flow depending on the size of the opening angle. In general, the size of the opening angle of the valve increases, the fluid flow has also increased sharply. However, sometimes, in a specific piping system, a particular operating condition is needed that the fluctuation of the fluid flow should not have large amount although the size of opening angle of the valve become larger. In butterfly value, the shape of a typical thin plate, it is impossible to control a minute fluid, but in thick plate type, it is possible. In this study, we got the fluid flow control characteristics and pressure drop through both a numerical method and an experimental method about thick plate type. The numerical result and experimental result of flow coefficient show a similar pattern. In addition, we could find that minute fluid flow control was possible in the area of small size of the opening angle.

경사각을 갖는 다층채널 흐름의 PIV 계측에 관한 연구 (A Study on PIV Measurement of Multi-Channel Flow with Inclination angle)

  • 조대환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.153-158
    • /
    • 2000
  • Flow visualization and PIV measurements were conducted to investigate the flow characteristics of multi-channel with inclination angle. The water flow seeded with tiny vegetable powder as tracers revealed details of flow field. The PIV measurement to acquire multi-point velocity data simulatneously was carried out at three space of plates for 5, 10, and 15mm with variation of inlet flow rates of $0.25m^3/h$ and <$0.5m^3/h.$ Experiment results show that space of plates acts a significant role in separating process.

  • PDF

Study of Flow Field and Pressure Distribution on a Rotor Blade of HAWT in Yawed Flow Conditions

  • Maeda, Takao;Kamada, Yasunari;Okada, Naohiro;Suzuki, Jun
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.360-368
    • /
    • 2010
  • This paper describes the flow field and the blade pressure distribution of a horizontal axis wind turbine in various yawed flow conditions. These measurements were carried out with 2.4m-diameter rotor with pressure sensors and a 2-dimensional laser Doppler velocimeter for each azimuth angle in a wind tunnel. The results show that aerodynamic forces of the blade based on the pressure measurements change according to the local angle of attack during rotation. Therefore the wake of the yawed rotor becomes asymmetric for the rotor axis. Furthermore, the relations between aerodynamic forces and azimuth angles change according to tip speed ratio. By the experimental analysis, the flow field and the aerodynamic forces for each azimuth angle in yawed flow condition were clarified.

과산화수소/케로신 점화용 분사기 설계 및 분무특성에 관한 연구 (A Study of Design of $H_2O_2$/Kerosene Ignition Injector and Spray Characteristics)

  • 김보연;황오식;이양석;고영성;김유;김선진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.37-40
    • /
    • 2009
  • 본 연구에서는 케로신/과산화수소 점화용 분사기의 설계/제작하여 분무특성에 관한 연구를 수행하고자 하였으며, 이에 앞서 촉매점화방식으로 적용할 때 가장 적합한 분사기를 설계하고자 하였다. 설계/제작된 분사기를 수류시험을 통해 질량 유량 및 분산각을 측정하였다. 그 결과 케로신의 목표 질량유량(12.88 g/s)은 설계 차압과 같은 차압인 3 bar에서 측정되었으며, 이 때 분산각은 $40^{\circ}$을 확인하였다. 또한 과산화수소의 목표 질량 유량(94.39 g/s)은 설계 차압(3 bar) 보다 작은 1 bar에서 측정됨을 확인하였다.

  • PDF

Numerical Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.357-364
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. Case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several different jet flow conditions, angle of attacks, circumferential jet locations, and spouting jet angles. For the several different jet flow conditions, which include the jet pressure, the jet Mach number, and the corresponding jet mass flow rate, the results show that the normal force coefficient is almost proportional to the jet thrust but the moment coefficient is not. Distinctly different flow phenomena can be noticed as the pressure ratio and the jet Mach number increase. By investigating the angle of attack effect to the normal force and the pitching moment, it has been identified that the normal force and the pitching moment show nonlinearity with respect to the angle of attack. From the detailed flow field analyses with respect to the jet flow conditions and the angle of attacks, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, the normal force and the pitching moment characteristics of the missile have been identified by comparing different circumferential jet locations and spouting jet angles.

  • PDF

곡관덕트에서 난류진동유동의 전단응력분포와 압력분포 (Wall shear stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in a Square sectional Curved Duct)

  • 이홍구;손현철;이행남;박길문
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.380-385
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in a square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to measure wall shear stress and pressure distributions, experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system. The wall shear stress measuring point bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $10^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows: A wall shear stress value in an inner wall is larger than that in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

시뮬레이션에 의한 유체 유동 파이프 계의 곡관부의 각도 변화에 따른 고유진동수 고찰 (A Simulation for the Natural Frequencies of Curved Pipes Containing Fluid Flow with Various Elbow Angles)

  • 최명진;장승호
    • 한국시뮬레이션학회논문지
    • /
    • 제10권1호
    • /
    • pp.63-65
    • /
    • 2001
  • To investigate the natural frequencies of curved piping systems with various elbow angles conveying flow fluid, a simulation is performed considering Initial tension due to the inside fluid. The system is analyzed by finite element method utilizing straight beam element. Elbow part is meshed using 4 elements, and the initial tension is considered by inserting equivalent terms into the stiffness matrix. Without considering the initial tension, the system becomes unstable, that is, the fundamental natural frequency approaches to zero value fast, as the flow velocity reaches critical value. With the initial tension terms, the system becomes stable where there is no abrupt decrease of the fundamental natural frequency. The change rate of the natural frequency with respect to the flow velocity reduces. As elbow angle increases, the system becomes stiffer, then around 150 degrees of the elbow angle the natural frequency has the largest value, the value decreases after the angle of the largest natural frequency. When angle is between 170 degrees and 179 degrees, the natural frequency is very sensitive. This means that small change of angle results in great change of natural frequency, which is expected to be utilized in the control of the natural frequency of the piping system conveying flow fluid.

  • PDF

횡유입에 의한 합류부 홍수특성 분석 (Analysis of Flood Characteristics at Confluence by Lateral Inflow)

  • 최흥식;조민석;박용섭
    • 한국방재학회 논문집
    • /
    • 제6권1호
    • /
    • pp.59-68
    • /
    • 2006
  • 합류부는 유량의 변화, 흐름방향의 전환으로 순환흐름의 분리구역의 발생에 의한 통수단면의 축소에 의한 통수능의 저하와 이에 따른 배수의 영향이 야기된다. 지류와 본류와의 유량비와 합류각을 달리하면서 실험한 결과를 이용하여 분리구역의 특성을 규명하였다. 분리구역의 정의는 유함수를 이용하여 그 값이 0(영)인 유선을 분리구역으로 정의하여 그 길이와 폭을 본류 하천폭으로 나눈 무차원 길이비와 무차원 폭비로 하였고, 유선에 의한 분리구역의 연구결과가 기존의 실험들과 비교적 잘 맞는 것으로 나타났다. 작은 유량비와 합류각 30도에서는 분리구역이 나타나지 않아서 유량비와 합류각에 의한 분리구역의 출현경계식을 만들었다. 분리구역에 대한 고찰로 합류각, 유량비, 그리고 본류 하류에서의 Froude수에 의한 분리구역의 무차원 길이비와 폭비에 대한 기존의 실험식을 수정하였고, 수굴계수와 형상지수의 수리적 특성을 분석하였다. 일반적으로 유량비와 합류각이 커질수록 분리구역이 크게 나타났다. 합류부를 전후한 상하류 구간에서 수면의 추적에서 유량비와 합류각이 커질수록 배수위의 영향이 크게 나타났고, 합류부가 접하는 내측보다 외측의 배수영향이 크게 나타났다. 하류부 유량에 의해 등류수심을 산정하여 합류가 시작되는 점에서부터 하류의 등류수심에 이르는 곳까지의 거리를 $X_l$로 보고 합류각과 유량비와 단면폭 및 수축계수간의 상관관계식을 산출하였다. 유량비와 합류각에 따른 수로내의 배수위에 의한 최대수위와 분리구역에서의 최소수심과의 비를 분석하였다.

배관계 오리피스 하류에서 유동가속부식으로 인한 국소 유동 파라미터에 대한 조사 (Investigation of Local Flow Parameters Caused by Flow Acceleration Corrosion Downstream of an Orifice in a Piping System)

  • 김경훈;조연수;김형준
    • 설비공학논문집
    • /
    • 제25권7호
    • /
    • pp.377-385
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows : The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and incre.