• Title/Summary/Keyword: flood forecast

Search Result 176, Processing Time 0.026 seconds

Short-term Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 단기 홍수량 예측)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • Kim, Gwang-Seob;Sun, Mingdong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF

Study on Streamflow Prediction Using Artificial Intelligent Technique (인공지능기법을 이용한 하천유출량 예측에 관한 연구)

  • An, Seung Seop;Sin, Seong Il
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.611-618
    • /
    • 2004
  • The Neural Network Models which mathematically interpret human thought processes were applied to resolve the uncertainty of model parameters and to increase the model's output for the streamflow forecast model. In order to test and verify the flood discharge forecast model eight flood events observed at Kumho station located on the midstream of Kumho river were chosen. Six events of them were used as test data and two events for verification. In order to make an analysis the Levengerg-Marquart method was used to estimate the best parameter for the Neural Network model. The structure of the model was composed of five types of models by varying the number of hidden layers and the number of nodes of hidden layers. Moreover, a logarithmic-sigmoid varying function was used in first and second hidden layers, and a linear function was used for the output. As a result of applying Neural Networks models for the five models, the N10-6model was considered suitable when there is one hidden layer, and the Nl0-9-5model when there are two hidden layers. In addition, when all the Neural Network models were reviewed, the Nl0-9-5model, which has two hidden layers, gave the most preferable results in an actual hydro-event.

A Study of River-Bed Variation from Goan to Indogyo due to Flood in Han River (홍수시 한강 하류부의 하상변동에 관한 연구)

  • 박정응;김경수
    • Water for future
    • /
    • v.24 no.2
    • /
    • pp.109-119
    • /
    • 1991
  • The river-bed variation and the sediment transport in an alluvial stream are very complicated physical phenomena, especially in a stream where the dam construction prevents the supply of earth and sand from upper tributaries Therefore, the mathematical modeling is needed to establish. The purpose of this study is to apply river-bed variation to the Han River downstream by the conception of gradually varied unsteady flow instead of that of steady flow in order to decrease errors. For the variation and forecast of river-bed, the numerical analysis has been made in this study by way of discharge variation and river-bed variation. In conclusion, the numerical analysis shows that river-bed variation, sediment transport , and their forecast have similarity to natural phenomena and that river-bed variation is greatly affected in sediment transport by discharge variation and retention time(duration). Therefore, the errors of numerical analysis can be reduced by the application of flood data instead of continuous discharge data.

  • PDF

A Development of Real-time Flood Forecasting System for U-City (Ubiquitous 환경의 U-City 홍수예측시스템 개발)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-184
    • /
    • 2007
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. Wireless sensors such as rainfall gauge and water lever gauge are installed to develop hydrologic forecasting model and CCTV camera systems are also incorporated to capture high definition images of river basins. U-FFS is based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) that is data-driven model and is characterized by its accuracy and adaptability. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. It is revealed that U-FFS can predict the water level of 30 minutes and 1 hour later very accurately. Unlike other hydrologic forecasting model, this newly developed U-FFS has advantages such as its applicability and feasibility. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (U-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

Economic Analysis of Floodplain Forecast using GIS and MD-FDA (GIS와 MD-FDA를 연계한 예상침수지역의 경제성 분석)

  • Choi, Hyun;Ahn, Chang-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.599-611
    • /
    • 2007
  • Among natural disasters that lead to devastating damage, floods from heavy rains have been causing hundreds of victims and a great loss of their properties every year. Basically, there is no other way to deal with the problem considering the characteristics of natural disaster, but more specific studies for a preventive measure of flood has been in progress so far. However, the controversy over the problem is going on due to the objection of some environmental organizations or some economic reasons. The key point is to select the most likely area for a preventive measure of floods where a huge amount of the national budget is put into it. This is the factor which judges whether it would be a success or failure. This study aims to provide some basic data for deciding the priority order in a disaster preventing plan by drawing more potential damage areas from the connection with GIS and using them into the economic analysis for flood prevention industries.

Development of Stochastic Real-Time Forecast System by Storage Function Method (저류함수법을 이용한 추계학적 실시간 홍수예측모형 개발)

  • Bae, Deok-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.449-457
    • /
    • 1997
  • This study attempts to develop a stochastic-dynamic real-time flow forecasting model for an event-orient watershed storage function model (SFM), which has been used as an official flood computation model in Korea, and to evaluate its performance for real-time flow forecast. The study area is the 747.5$\textrm{km}^2$ Hwecheon basin with outlet at Gaejin and the 8 single flow events during 1983-1986 are selected for comparison and verification of model parameter and model performance. The used model parameters in this study are the same values on field work. It is shown that results from the existing model highly depend on the events, but those from the developed model are stable and well predict the flows for the selected flood events. The coefficient of model efficiency between observed and predicted flows for the events was above 0.90. It is concluded that the developed model that can consider model and observation uncertainties during a flood event is feasible and produces reliable real-time flow forecasts on the area.

  • PDF

A study on prediction method for flood risk using LENS and flood risk matrix (국지 앙상블자료와 홍수위험매트릭스를 이용한 홍수위험도 예측 방법 연구)

  • Choi, Cheonkyu;Kim, Kyungtak;Choi, Yunseok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.657-668
    • /
    • 2022
  • With the occurrence of localized heavy rain while river flow has increased, both flow and rainfall cause riverside flood damages. As the degree of damage varies according to the level of social and economic impact, it is required to secure sufficient forecast lead time for flood response in areas with high population and asset density. In this study, the author established a flood risk matrix using ensemble rainfall runoff modeling and evaluated its applicability in order to increase the damage reduction effect by securing the time required for flood response. The flood risk matrix constructs the flood damage impact level (X-axis) using flood damage data and predicts the likelihood of flood occurrence (Y-axis) according to the result of ensemble rainfall runoff modeling using LENS rainfall data and as well as probabilistic forecasting. Therefore, the author introduced a method for determining the impact level of flood damage using historical flood damage data and quantitative flood damage assessment methods. It was compared with the existing flood warning data and the damage situation at the flood warning points in the Taehwa River Basin and the Hyeongsan River Basin in the Nakdong River Region. As a result, the analysis showed that it was possible to predict the time and degree of flood risk from up to three days in advance. Hence, it will be helpful for damage reduction activities by securing the lead time for flood response.

Integrated Storage Function Model with Fuzzy Control for Flood Forecasting (II) - Theory and Proposal of Model - (홍수예보를 위한 통합저류함수모형의 퍼지제어 (II) - 이론의 모형의 수립 -)

  • Lee, Jeong-Gyu;Kim, Han-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.701-709
    • /
    • 2000
  • Integrated storage function model (ISFM) is applied to some rainfall-runoff events of the selected basins in Korea to show validity of the proposed model. Comparing the numerical results of the model with the field measurements, the simulated hydrographs and peak flood discharges for the most part showed good agreements, except the occurrence time of the peak discharges which showed a bit discrepancy, and they showed it was very hard to have a sufficient lead-time to forecast the flood when the upstream inflow of the channel reach was more dominant than the inflow from the residual watershed of the channel.hannel.

  • PDF