• Title/Summary/Keyword: flexural cracking

Search Result 323, Processing Time 0.022 seconds

Improvement of Fatigue Model of Concrete Pavement Slabs Using Environmental Loading (환경하중을 이용하는 콘크리트 포장 슬래브 피로모형의 개선)

  • Park, Joo-Young;Lim, Jin-Sun;Kim, Sang-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.103-115
    • /
    • 2011
  • Concrete slab curls and warps due to the uneven distribution of temperature and moisture and as the result, internal stress develops within the slab. Therefore, environmental loads must be considered in addition to the traffic loads to predict the lifespan of the concrete pavement more accurately. The strength of the concrete slab is gradually decreases to a certain level at which fatigue cracking is generated by the repetitive traffic and environmental loadings. In this study, a new fatigue regression model was developed based on the results from previously performed studies. To verify the model, another laboratory flexural fatigue test program which was not used in the model development, was conducted and compared with the predictions of other existing models. Each fatigue model was applied to analysis logic of cumulative fatigue damage of concrete pavement developed in the study. The sensitivity of cumulative fatigue damage calculated by each model was analyzed for the design factors such as slab thickness, joint spacing, complex modulus of subgrade reaction and the load transfer at joints. As the result, the model developed in this study could reflect environmental loading more reasonably by improving other existing models which consider R, minimum/maximum stress ratio.

Tension Lap Splice Length in High-Strength Concrete Flexural Members (고강도 콘크리트 휨부재의 인장 겹침이음길이에 관한 연구)

  • Lee, Gi-Yeol;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.753-761
    • /
    • 2009
  • This paper presents the test results of total 24 beam-end specimens to investigate the effect of high-strength concrete and cover thickness on the development resistance capacity in tensile lap splice length regions. Based on bond characteristics that an increase in concrete strength results in higher bond stress and shortening of the transfer length, cracking behavior that thin cover thickness induced a splitting crack easily and brittle crack propagation, current design code that development length provisions as uniform bond stress assumption was investigated apply as it. The results showed that as higher strength concrete was employed, not only development resistance capacity was influenced by cover thickness, but also more sufficient safety factor reserved shorter than the lap splice length provision in current design code. From experimental research results, high-strength concrete development length was not inverse ratio of $\sqrt{f_{ck}}$ but directly inverse of $f_{ck}$, and it is also said that there is a certain limit length of the embedded steel over which the assumption of uniform bond stress distribution is valid specially for high-strength concrete not having a same embed length such as normal-strength concrete in current design criteria hypothesis.

Experimental Evaluation on Effective Moment of Inertia of Reinforced Concrete Simple Beams and Continuos Beams Considering Tension Stiffening Effect (인장증강효과를 고려한 철근콘크리트 단순보와 연속보의 유효 단면2차모멘트에 대한 실험적 검증)

  • Lee, Seung-Bae;Yoon, Hyeong-Jae;Kim, Kang-Su;Kim, Sang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.285-288
    • /
    • 2008
  • A model for the effective moment of inertia $I_{\epsilon}$ as expressed in Branson's equation, in which reduction of the flexural rigidity of RC beams due to cracking are aptly taken into accoun,t is presented. However, KCI Code isn`t considered tension stiffening as it is in debonding of reinforcing bar. Therefore, this equation need to set up suitable to our design Code. The experimental work consisted of casting and testing a total of 6 simply supported reinforced concrete beams and a total of 4 continuos reinforced concrete beams under two point concentrated loads. Main parameters are concrete strength, coverage, bond between concrete and reinforcing bars, are known as have an effect on deflection and tension stiffening. Every test beams had the same $250{\times}350$mm rectangular section, with a simply supported clear span of 4,400 mm and a continuos clear span of 6,500 mm. Comparison of the test results with values obtained using the KCI Code equation of the effective moment of inertia showed a noticeable difference.

  • PDF

Development of Non-linear Analysis Model for Torsional Behavior of Composite Box-Girder with Corrugated Steel Webs (복부 파형강판을 갖는 복합교량의 비틀림 거동에 대한 비선형 해석 모델 개발)

  • Ko, Hee Jung;Moon, Jiho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.153-162
    • /
    • 2011
  • Composite box-girder with corrugated steel webs has been widely used in civil engineering practice as an alternative of conventional pre-stressed concrete box-girder because the efficiency of pre-stressing can be increased and weight reduction of superstructure can be achieved by replacing concrete webs as a corrugated steel webs. However, most of previous researches were limited in shear and flexural behavior of such girder so that the torsional behaviors of composite box-girder with corrugated steel webs are not fully understood yet and it needs to be investigated. Some of previous researchers developed the nonlinear theory for torsional analysis of composite box-girder with corrugated steel webs. However, their theories were developed by ignoring the tensile behavior of concrete. Thus, there are certain limitations in analysis of serviceability such as cracking moment and torsional stiffness of the girder. This paper presents the analytical model for torsional behavior of composite box-girder with corrugated steel webs considering tensile behavior of concrete. Based on the proposed analytical model, nonlinear torsional analysis program of composite box-girder with corrugated steel webs was developed. Then, for verification of validation of the developed model, test for the girder was conducted and the results were compared with those of analytical model. Finally, parametric study was conducted and the effects of tensile behavior of concrete on the torsional behavior of the girder were discussed.

A Study on Fatigue Behavior of Two-Span Fiber Reinforced Concrete Beam (강섬유 보강 철근콘크리트 2경간 연속보의 피로거동에 관한 연구)

  • Kwak, Kae-Hwan;Cho, Seon-Jeong;Seok, In-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2003
  • As concrete structures are getting larger, higher, longer, and specialized, it is more required to develop steel fiber concrete and apply to the real world. In this research, it is aimed to have fatigue strength examined, varying the steel fiber content by 0%, 0.75%, 1.00%, 1.25%, by experimental study of Two-spans Beam with Steel Fibrous with repeated loads. The ultimate load and the initial load of flexural cracking were measured by static test. In addition, the load versus strain relation, load versus strain relation, load versus deflection relation, crack pattern and fracture mode by increasing weight was observed. On the other hand, the crack propagation and the modes of fracture according to cycle number and the relation of cycle loading to deflection relation and strain relation was observed by fatigue test. As the result of fatigue test, Two-spans Beam without Steel Fibrous was failed at 60~70% of the static ultimate strength and it could be concluded that fatigue strength to two million cycle was around 67.2% by S-N curve. On the other hand, that with Steel Fibrous was failed at 65~85% of the static ultimate strength and it could be concluded fatigue strength to two million cycle around 71.7%.

Structural Behavior of Steel Fiber-Reinforced Concrete Beams with High-Strength Rebar Subjected to Bending (휨을 받는 강섬유 보강 고강도철근 콘크리트 보의 구조 거동)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Changbin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.93-102
    • /
    • 2016
  • The purpose of this paper is to investigate the flexural behavior of high-strength steel fiber-reinforced concrete beams with compressive strength of 130 MPa. The paper presents experimental research results of steel fiber-reinforced concrete beams with steel fiber content of 1.0% by volume and steel reinforcement ratio of less than 0.02. Both of normal-strength rebar and high-strength rebar were used in the test beams. Modeling as well as compressive and tensile strength test of high-strength steel fiber-reinforced concrete was performed to predict the bending strength of concrete beams. Tension modeling was performed by using inverse analysis in which load-crack mouth opening displacement relationship was considered. The experimental results show that high-strength steel fiber-reinforced concrete beams and the addition of high-strength rebar is in favor of cracking resistance and ductile behavior of beams. For beams reinforced with normal-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.81 to 1.42, whereas for beams reinforced with high-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.92 to 1.07. The comparison of bending strength from numerical analysis with the test results showed a reasonable agreement.

A Study on Static Behavior of 60 m span Half-Decked PSC Girder (Half-Deck을 포함한 60 m 경간 PS 콘크리트거더의 정적 거동 연구)

  • Kim, Tae Min;Park, Jong Heon;Kim, Moon Kyum;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.65-73
    • /
    • 2012
  • In this study, we tested structural performance of Half-Decked PSC girder which was developed for applying to long span bridge. We operated 4 point bending test with 60 m span full scale girder designed as simple bridge with hinge-roller boundary condition. Actuators were set on the both sides of girder, 5.5 m away from the center, and 4 stages of cyclic loading was applied at rate of 1 kN/sec. Through stages 1 to 4, loading and unloading 1,000 kN, 1,200 kN, 1,500 kN, and 2,000 kN were repeated and displacement, strain of concrete and steel, crack of girder were checked. From these results, the strength of girder was assessed and resilience and ductility were observed after removing the load. Since initial flexural crack occurred in the vicinity of 1,400 kN, non-linearity of load-displacement curve appeared and definite residual strain was measured at that point. The test result showed that initial cracking load was over twice the DB-24 load which means the developed girder had sufficient strength. To verify the experimental results, we numerically analyze the test and confirmed that the data were similar with results from the test above. Half-Decked PSC type of 60 m-girder developed in this study showed its adequate structural capacity through static loading test, which proved that possibility of applying the girder to actual bridges practically.

Shear Performance of Board-type Two-way Voided Slab (일체형 중공재의 중공부 내부형상에 따른 이방향 중공슬래브의 전단성능 평가)

  • Choi, Hyeon-Min;Park, Tae-Won;Paik, In-Kwan;Kim, Je-Sub;Han, Ju-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2015
  • Currently, social demands for long span building structures are increasing due to architectural planning purposes and economic efficiency. As a result, lighter board-type voiding materials were suggested. With the use of board-type voiding materials, a slab is able to become light weight and convenient. This process efficiently eliminates concrete where it is not required; considerably diminishing dead weight while maintaining the flexural strength of the slab. The reduction in concrete also allows for overall cost reductions and design flexibility. Also it can be ease with fixing the voided material that is composed of one body form. Although board-type voiding materials are ideal, the top and bottom concrete plates lack integrity. Because of this, test results show horizontal cracking towards the tops and bottoms of the concrete columns, or webs, connecting the slabs. The key to correcting this problem is to increase the shear strength. In order to increase the shear strength of the structure, horizontal shear area must increase. R70(100)-D-F has the largest horizontal shear area as it also shows stronger strength. As a result, shear strength ($V_{nh}$) is dependent on the horizontal shear area (N). $V_{nh}={\alpha}{\times}0.16{\sqrt{f_{ck}}}{\frac{{\pi}D^2}{4}}{\times}N({\alpha}=1.8125)$. The web columns have a shear span to depth ratio (a/d) that is less than 2; which classifies it as a deep beam. In this case, however, the shear strength of the deep beams may be as much as 2 to 3 times greater than that predicated conventional equations developed for members of normal proportions. As a result, ${\alpha}$ is suggested as an extra coefficient in the equation for shear strength ($V_{nh}$).

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.

Evaluation of Structural Performance of Precast Prestressed Hollow-Core Slabs with Shear Reinforcement (전단철근이 배치된 프리캐스트 프리스트레스트 중공슬래브의 구조성능 평가)

  • Sang-Yoon Kim;Seon-Hoon Kim;Deuck-Hang Lee;Sun-Jin Han;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • This study aims to investigate the structural performance of hollow-core slab (HCS) memebers with 400 mm thickness. To this end, a total of four HCS specimens were fabricated based on the individual mold method to provide shear reinforcement, unlike the extrusion method. The key variables were chosen as the presence of topping concrete, core-filling concrete, and shear reinforcements. The crack patterns and load-displacement responses of the test specimens were analyzed in detail. Test results showed that inclined shear cracking occurred all the specimens, and that the specimen with shear reinforcement on the web of HCS unit had higher strength and ductility than the specimen without shear reinforcement. In particular, shear reinforcements placed on the web of HCS unit effectively resisted not only to vertical shear force but also to horizontal shear force between the interface of HCS unit and topping concrete. In addition, it was discovered that the method in which shear reinforcements are placed on the web of HCS unit is more effective in improving structural performance than core-filling method.