DOI QR코드

DOI QR Code

Evaluation of Structural Performance of Precast Prestressed Hollow-Core Slabs with Shear Reinforcement

전단철근이 배치된 프리캐스트 프리스트레스트 중공슬래브의 구조성능 평가

  • 김상윤 (충북대학교 건축공학과 ) ;
  • 김선훈 (충북대학교 건축공학과 ) ;
  • 이득행 (충북대학교 건축공학과 ) ;
  • 한선진 (동경대학교 토목공학과 ) ;
  • 김길희 (공주대학교 건축공학과 )
  • Received : 2022.11.23
  • Accepted : 2022.12.29
  • Published : 2023.02.28

Abstract

This study aims to investigate the structural performance of hollow-core slab (HCS) memebers with 400 mm thickness. To this end, a total of four HCS specimens were fabricated based on the individual mold method to provide shear reinforcement, unlike the extrusion method. The key variables were chosen as the presence of topping concrete, core-filling concrete, and shear reinforcements. The crack patterns and load-displacement responses of the test specimens were analyzed in detail. Test results showed that inclined shear cracking occurred all the specimens, and that the specimen with shear reinforcement on the web of HCS unit had higher strength and ductility than the specimen without shear reinforcement. In particular, shear reinforcements placed on the web of HCS unit effectively resisted not only to vertical shear force but also to horizontal shear force between the interface of HCS unit and topping concrete. In addition, it was discovered that the method in which shear reinforcements are placed on the web of HCS unit is more effective in improving structural performance than core-filling method.

이 연구에서는 높이가 400 mm인 중공슬래브(Hollow-Core Slab, 이하 HCS)의 구조성능을 평가하기 위한 실대형 실험을 수행하였으며, 기존의 압출성형방식이 아닌 단일몰드방식을 적용하여 총 4개의 HCS를 제작하였다. 실험의 주요 변수는 토핑콘크리트의 유무, 전단보강근의 배치 유무 및 위치로 설정하였으며, 실험체들의 균열패턴 및 하중-변위 응답을 상세히 분석하였다. 실험결과 전단철근이 배치된 HCS 실험체들은 휨강도를 달성하였고, 이후에 최종적인 파괴는 사인장균열에 의하여 지배되었으며, HCS 유닛 웨브 내에 전단철근이 배치되지 않은 실험체들의 경우 설계기준을 통해 산정된 공칭휨강도를 발현하지 못하였다. 전단철근을 HCS 유닛에 배근 할 경우에는 전단강도가 약 8~23% 증가하는 것으로 나타났으며, HCS의 중공을 철근콘크리트로 보강하는 방법보다 전단성능 향상에 더 효과적인 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 충북대학교 국립대학육성사업(2022)지원을 받아 작성되었음.

References

  1. Lee, D. H., Park, M. K., Oh, J. Y., Kim, K. S., Im, J. H., and Seo, S. Y. (2014), Web-Shear Capacity of Prestressed Hollow-Core Slab Unit with Consideration on the Minimum Shear Reinforcement Requirement, Computers and Concrete, 14(3), 211-231. https://doi.org/10.12989/cac.2014.14.3.211
  2. Park, M. K., Lee, D. H., Han, S. J., and Kim, K. S. (2019), Web-Shear Capacity of Thick Precast Prestressed Hollow-Core Slab Units Produced by Extrusion Method, International Journal of Concrete Structures and Materials, 13(1), 1-14. https://doi.org/10.1186/s40069-018-0311-2
  3. KCI (2017), Concrete Design Code and Commentary, Korea Concrete Institute, Seoul, 81-285.
  4. ACI Committee 347 (2014), Guide to Formwork for Concrete (ACI347R-14), American Concrete Institute, Detroit, Michigan, 2-8.
  5. ACI Committee 318 (2019), Building Code Requirements for Reinforced Concrete and Commentary (ACI318R-19), American Concrete Institute, Detroit, Michigan, 51-59, 89-94, 397-466.
  6. PCI Industry Handbook Committee (2017), PCI Design Handbook: Precast and Prestressed Concrete, 8th Edition, Precast/Prestressed Concrete Institute (PCI).
  7. Lee, D. H., Park, M. K., Ju, H. E., Han, S. J., and Kim, K. S. (2020), Strengths of Thick Prestressed Precast Hollow-Core Slab Members Strengthened in Shear, ACI Structural Journal, 117(2), 129-140. https://doi.org/10.14359/51720203
  8. Park, M. K., Lee, D. H., Yang, Y. G., Zhang, D., and Kim, K. S. (2022), Composite Performance of Prestressed Hollow-Core Slabs with Cast-in-Place Topping Concrete, ACI Structural Journal, 119(3), 153-164. https://doi.org/10.14359/51734347
  9. Hur, M. W., Chae, K. H., Park, T. W., Kang, H. W., and Park, H. S. (2021), Safety Evaluation of Void Plywood Slab System with form Work Panel, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(6), 185-192. https://doi.org/10.11112/JKSMI.2021.25.6.185