• Title/Summary/Keyword: flash storage device

Search Result 89, Processing Time 0.023 seconds

EPET-WL: Enhanced Prediction and Elapsed Time-based Wear Leveling Technique for NAND Flash Memory in Portable Devices

  • Kim, Sung Ho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2016
  • Magnetic disks have been used for decades in auxiliary storage devices of computer systems. In recent years, the use of NAND flash memory, which is called SSD, is increased as auxiliary storage devices. However, NAND flash memory, unlike traditional magnetic disks, necessarily performs the erase operation before the write operation in order to overwrite data and this leads to degrade the system lifetime and performance of overall NAND flash memory system. Moreover, NAND flash memory has the lower endurance, compared to traditional magnetic disks. To overcome this problem, this paper proposes EPET (Enhanced Prediction and Elapsed Time) wear leveling technique, which is especially efficient to portable devices. EPET wear leveling uses the advantage of PET (Prediction of Elapsed Time) wear leveling and solves long-term system failure time problem. Moreover, EPET wear leveling further improves space efficiency. In our experiments, EPET wear leveling prolonged the first bad time up to 328.9% and prolonged the system lifetime up to 305.9%, compared to other techniques.

Garbage Collection Technique for Balanced Wear-out and Durability Enhancement with Solid State Drive on Storage Systems

  • Kim, Sungho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.25-32
    • /
    • 2017
  • Recently, the use of NAND flash memory is being increased as a secondary device to displace conventional magnetic disk. NAND flash memory, as one among non-volatile memories, has many advantages such as low power, high reliability, low access latency, and so on. However, NAND flash memory has disadvantages such as erase-before-write, unbalanced operation speed, and limited P/E cycles, unlike conventional magnetic disk. To solve these problems, NAND flash memory mainly adopted FTL (Flash Translation Layer). In particular, garbage collection technique in FTL tried to improve the system lifetime. However, previous garbage collection techniques have a sensitive property of the system lifetime according to write pattern. To solve this problem, we propose BSGC (Balanced Selection-based Garbage Collection) technique. BSGC efficiently selects a victim block using all intervals from the past information to the current information. In this work, SFL (Search First linked List), as the proposed block allocation policy, prolongs the system lifetime additionally. In our experiments, SFL and BSGC prolonged the system lifetime about 12.85% on average and reduced page migrations about 22.12% on average. Moreover, SFL and BSGC reduced the average response time of 16.88% on average.

Sampling-based Block Erase Table in Wear Leveling Technique for Flash Memory

  • Kim, Seon Hwan;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, flash memory has been in a great demand from embedded system sectors for storage devices. However, program/erase (P/E) cycles per block are limited on flash memory. For the limited number of P/E cycles, many wear leveling techniques are studied. They prolonged the life time of flash memory using information tables. As one of the techniques, block erase table (BET) method using a bit array table was studied for embedded devices. However, it has a disadvantage in that performance of wear leveling is sharply low, when the consumption of memory is reduced. To solve this problem, we propose a novel wear leveling technique using Sampling-based Block Erase Table (SBET). SBET relates one bit of the bit array table to each block by using exclusive OR operation with round robin function. Accordingly, SBET enhances accuracy of cold block information and can prevent to decrease the performance of wear leveling. In our experiment, SBET prolongs life time of flash memory by up to 88%, compared with previous techniques which use a bit array table.

The Analysis of Efficient Disk Buffer Management Policies to Develop Undesignated Cultural Heritage Management and Real-time Theft Chase (실시간 비지정 문화재 관리 및 도난 추적 시스템 개발을 위한 효율적인 디스크 버퍼 관리 정책 분석)

  • Jun-Hyeong Choi;Sang-Ho Hwang;SeungMan Chun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1299-1306
    • /
    • 2023
  • In this paper, we present a system for undesignated cultural heritage management and real-time theft chase, which uses flash-based large-capacity storage. The proposed system is composed of 3 parts, such as a cultural management device, a flash-based server, and a monitoring service for managing cultural heritages and chasing thefts using IoT technologies. However flash-based storage needs methods to overcome the limited lifespan. Therefore, in this paper, we present a system, which uses the disk buffer in flash-based storage to overcome the disadvantage, and evaluate the system performance in various environments. In our experiments, LRU policy shows the number of direct writes in the flash-based storage by 10.7% on average compared with CLOCK and FCFS.

Performance Analysis of Flash Translation Layer Algorithms for Windows-based Flash Memory Storage Device (윈도우즈 기반 플래시 메모리의 플래시 변환 계층 알고리즘 성능 분석)

  • Park, Won-Joo;Park, Sung-Hwan;Park, Sang-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.4
    • /
    • pp.213-225
    • /
    • 2007
  • Flash memory is widely used as a storage device for potable equipments such as digital cameras, MP3 players and cellular phones because of its characteristics such as its large volume and nonvolatile feature, low power consumption, and good performance. However, a block in flash memories should be erased to write because of its hardware characteristic which is called as erase-before-write architecture. The erase operation is much slower than read or write operations. FTL is used to overcome this problem. We compared the performance of the existing FTL algorithms on Windows-based OS. We have developed a tool called FTL APAT in order to gather I/O patterns of the disk and analyze the performance of the FTL algorithms. It is the log buffer scheme with full associative sector translation(FAST) that the performance is best.

A Study on Security Solution for USB Flash Drive (USB 메모리를 위한 보안 솔루션에 관한 연구)

  • Lee, Sun-Ho;Lee, Im-Yeong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • A USB flash drive is a portable storage device. For its promising moderate price, portability and high capacity USB flash drive users are increasing rapidly. Despite these advantages USB flash drives have critical problems as well. Such as personal information data leakage due to easy loss of the portable device. As these personal information leakage incidents increases various security measure solutions are produced and distributed. Despite these security measures and solutions it is not enough to perfectly protect personal data leakage. Hence the necessity of a more concrete, secure, user-friendly security measure solution is required. In this paper we provide you with portable USB flash drive security solution analysis and provide you with the latest secure, user-friendly security measure solutions.

Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage

  • Kwon, Wookhyun;Park, In Jun;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.286-291
    • /
    • 2015
  • For highly scalable NAND flash memory applications, a compact ($4F^2/cell$) nonvolatile memory architecture is proposed and investigated via three-dimensional device simulations. The back-channel program/erase is conducted independently from the front-channel read operation as information is stored in the form of charge at the backside of the channel, and hence, read disturbance is avoided. The memory cell structure is essentially equivalent to that of the fully-depleted transistor, which allows a high cell read current and a steep subthreshold slope, to enable lower voltage operation in comparison with conventional NAND flash devices. To minimize memory cell disturbance during programming, a charge depletion method using appropriate biasing of a buried back-gate line that runs parallel to the bit line is introduced. This design is a new candidate for scaling NAND flash memory to sub-20 nm lateral dimensions.

Workload-Driven Adaptive Log Block Allocation for Efficient Flash Memory Management (효율적 플래시 메모리 관리를 위한 워크로드 기반의 적응적 로그 블록 할당 기법)

  • Koo, Duck-Hoi;Shin, Dong-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.90-102
    • /
    • 2010
  • Flash memory has been widely used as an important storage device for consumer electronics. For the flash memory-based storage systems, FTL (Flash Translation Layer) is used to handle the mapping between a logical page address and a physical page address. Especially, log buffer-based FTLs provide a good performance with small-sized mapping information. In designing the log buffer-based FTL, one important factor is to determine the mapping structure between data blocks and log blocks, called associativity. While previous works use static associativity fixed at the design time, we propose a new log block mapping scheme which adjusts associativity based on the run-time workload. Our proposed scheme improves the I/O performance about 5~16% compared to the static scheme by adjusting the associativity to provide the best performance.

IPSiNS: I/O Performance Simulation Tool for NAND Flash Memory-based Storage System (IPSiNS: 낸드 플래시 메모리 기반 저장 장치를 위한 입출력 성능 시뮬레이션 도구)

  • Yoon, Kyeong-Hoon;Jung, Ho-Young;Park, Sung-Min;Sim, Hyo-Gi;Cha, Jae-Hyuk;Kang, Soo-Yong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.333-337
    • /
    • 2007
  • Flash Translation Layer(FTL) which enables NAND Flash memory-based storage system to be used as a block device is designed considering only characteristics of NAND Flash memory. However, since FTL precesses I/O requests which survived against buffer replacement algorithm, FTL algorithm has tight relationship with buffer replacement algorithm. Therefore, if we do not consider both FTL and buffer replacement algorithms, it is difficult to predict the actual I/O performance of the computer systems that have Flash memory-based storage system. The necessity of FTL and buffer replacement algorithm co-design arises here. In this work, we implemented I/O performance evaluation tool, IPSiNS, which simulates both the buffer replacement and FTL algorithms, simultaneously.

Flash Operation Group Scheduling for Supporting QoS of SSD I/O Request Streams (SSD 입출력 요청 스트림들의 QoS 지원을 위한 플래시 연산 그룹 스케줄링)

  • Lee, Eungyu;Won, Sun;Lee, Joonwoo;Kim, Kanghee;Nam, Eyeehyun
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1480-1485
    • /
    • 2015
  • As SSDs are increasingly being used as high-performance storage or caches, attention is increasingly paid to the provision of SSDs with Quality-of-Service for I/O request streams of various applications in server systems. Since most SSDs are using the AHCI controller interface on a SATA bus, it is not possible to provide a differentiated service by distinguishing each I/O stream from others within the SSD. However, since a new SSD interface, the NVME controller interface on a PCI Express bus, has been proposed, it is now possible to recognize each I/O stream and schedule I/O requests within the SSD for differentiated services. This paper proposes Flash Operation Group Scheduling within NVME-based flash storage devices, and demonstrates through QEMU-based simulation that we can achieve a proportional bandwidth share for each I/O stream.