• Title/Summary/Keyword: flame-retardant coatings

Search Result 40, Processing Time 0.021 seconds

Preparation and Characterization of Polyurethane Flame Retardant Coatings Using Trichloro Lactone Modified Polyesters/IPDI-Isocyanurate (트리클로로 락톤 변성폴리에스테르/IPDI-Isocyanurate를 사용한 폴리우레탄 난연도료의 제조 및 특성)

  • Park, Hong-Soo;Jo, Hye-Jin;Shim, Il-Woo;Yang, In-Mo;Kim, Seung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.252-263
    • /
    • 2006
  • It is attempted to develop flame retardant polyurethane coatings, which have received significant attention in recent years. It is the purpose of this study to synthesize new reactive polyurethane coatings containing halogen. Lactone based modified polyester polyols, using trichlorobenzoic acid as chlorine moiety (TBAOs) were synthesized. These polyesters were cured with isophorone diisocyanate (IPDI)-isocyanurate at room temperature (TBAPUs). Physical properties of these flame retardant coatings were similar with those of non-flame retardant coatings. The flammability of coatings was strongly dependent on the chlorine contents. We found that the increasing chlorine contents showed better flame retarding properties and that, however, they also resulted in more smog generation during combustion. The detailed results of flammability test using various methods indicated $24{\sim}26%$ in LOI and $3.7{\sim}5.3\;cm$ char length in $45^{\circ}$ Meckel burner method.

Physical Properties and Flame-Retardant Effects of Polyurethane Coatings Containing Pyrophosphoric Lactone Modified Polyesters (파이로포스포릭 락톤 변성 폴리에스터를 함유한 폴리우레탄 도료의 물성 및 난연 효과)

  • 정동진;김성래;박형진;박홍수;김승진
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.169-175
    • /
    • 2003
  • Pyrophosphoric lactone modified polyester (PATT) containing two phosphorous functional groups in one unit structure was synthesized to prepare a non-toxic reactive flame-retardant coatings. Then the PATT was cured at room temperature with isocyanate, toluene diisocyanate-isocyanurate , to get a two-component polyurethane flame-retardant coatings (PIPUC). Comparing physical properties of the films of PIPUC with those of film of non-flame-retardant coatings, there was no deterioration observed in physical properties by the introduction of a flame-retarding component into the resin. We found that the char lengths measured by 45$^{\circ}$ Meckel burner method were 3.1∼4.4 cm and LOI values recorded 27∼30%. These results indicate that the coating prepared in this study is a good flame-retardant. The surface structure of coatings investigated with SEM does not show any defects and phase separation.

Preparation and Flame-Retardant Optimization of PU Coatings Using Chlorine-Containing Modified Polyester/IPDI- Isocyanurate

  • You, Hyuk-Jae;Shim, Il-Woo;Jo, Hye-Jin;Park, Hong-Soo;Kim, Seung-Jin;Kim, Young-Geun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Chlorine-containing modified polyester polyols were synthesized by two-step condensation reactions. Intermediate was synthesized by the esterification of monochloroacetic acid with trimethylolpropane in the first step. Polycondensation of the intermediate (MCAOs), 1,4-butanediol, and trimethylolpropane with adipic acid was carried out. Two-component polyurethane (PU) coatings were prepared by blending MCAOs and IPDI-isocyanurate. There new flame-retardant coatings showed various properties comparable to other non-flame-retardant coatings. They were superior to flammable coatings from the experimental results showing rapid and 10 to 13 hours of pot-life. Coatings with 30wt% monochloroacetic acid was not flammable by the vertical flame retardancy test.

Application of Isocyanate and Modified Polyester Containing Phosphorous and Chlorine to Crosslinked PU Flame-Retardant Coatings (인과 염소 함유 변성폴리에스터/이소시아네이트 가교 폴리머의 PU 난연도료에의 적용)

  • Park, Hong-Soo;Kim, Song-Hyoung;Ahn, Sung-Hwan;Yoo, Gyu-Yeol;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.124-139
    • /
    • 2007
  • In order to obtain the maximum flame retardancy with the minimal deterioration of physical properties of PU flame-retardant coatings, chlorine and phosphorous functional groups were introduced into the pre-polymer of modified polyesters. In the first step, the tetramethylene bis(orthophosphate) (TBOP) and neohexanediol dichloroacetate (DCA-adduct) intermediates were synthesized. In the second step, 1,4-butanediol and adipic acid monomers were polymerized with the two kind of intermediates to obtain copolymer. The modified polyesters containing chlorine and phosphorous (ATBA-10C, -20C, and -30C) were synthesized by adjusting the contents of chlorine compound (dichloroacetic acid, 10, 20, 30 wt%) with fixed the content of phosphorous compound (2 wt%). The PU flame-retardant coatings (TTBAH -10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorous were inferior to those with phosphorous only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, Complete combustion time of ATBAHs were $259^{\sim}347$ seconds, which means that the prepared coatings are good flame-retardant. With the $45^{\circ}$ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are 1st grade flame retardancy. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of $30^{\sim}35%$, which proves good flame retardancy of the prepared coatings. From the results of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds, it was found that the coatings containing both phosphorous and chlorine show higher flame retardancy than the coatings containing phosphorous alone. This indicates that some synergy effect of flame retardancy exists between phosphorous and chlorine.

Physical Properties and Flame Retardancy of PU Coatings Polymerized with Two Different Types of Isocyanates and Dichloro-Polyester Polyol (두 종류의 이소시아네이트와 디클로로-폴리에스테르 폴리올로부터 중합한 PU 난연도료의 도막물성 및 난연성)

  • 양인모;김성래;박형진;함현식;우종표
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.193-199
    • /
    • 2002
  • The dichloro-polyester polyol (DCBAO) which was synthesized in our earlier work was cured at room temperature with two different type of curing agents including Desmodur N-3300 and Desmodur L-75 to get a polyurethane flame-retardant coatings (DCBAO/N-3300=DEBAN and DCBAO/L-75=DCBAL). We could not observe any deterioration of physical properties of the flame-retardant PU coatings (UCBAN and DCBAL) in comparison with the conventional PU coatings. Thermal resistance of DCBAL-type flame-retardant coatings, which was measured by yellowness index difference, was inferior to that of DCBAL-type PU coatings. We believe that this phenomena is attributed to the poor thermal resistance of Desmodur L-75 isocyanate. It was observed that the LOI values were 25∼26% for the PU coatings containing 20∼30 wt% of 2,4-dichlorobenzoic acid.

Preparation of Reactive Flame Retardant Coatings Containing Phosphorus II. Preparation and Characterization of Polyurethane Coatings (반응형 인계 난연도료의 제조 II. 폴리우레탄 도료의 제조 및 도막특성)

  • Kim, Sung-Rae;Park, Hyong-Jin;Jung, Choong-Ho;Park, Hong-Soo;Im, Wan-Bin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • Two-component polyurethane flame retardant coatings (ATTBC) were prepared by blending polyisocyanate (TDI-adduct) with ATTBs mentioned at the previous paper. Most of the physical properties of the flame retardant coatings were comparable to those of non-flame retardant coatings. Especially, the hardness, impact resistance, and accelerated weathering resistance were remarkably improved with the increase of the content of 1,4-butanediol. Coatings containing 10 and 15 wt% 1,4-butanediol, ATTBC-10C and ATTBC-15C, were not flammable in vertical flame-retardancy test. Their char area recorded 1.1${\sim}$11.6 $cm^2$ in 45$^{\circ}$ eckel burner method.

Preparation and Characterization of PU Flame-Retardant Coatings Using Modified Polyester Containing Phosphorus/Chlorine and HDI-Trimer (인과 염소 함유 변성폴리에스터와 HDI-Trimer에 의한 PU 난연도료의 제조 및 도막특성화)

  • Park, Hong-Soo;Kim, Song-Hyoung;Hong, Seok-Young;Yoo, Gyu-Yeol;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.328-339
    • /
    • 2006
  • The PU flame-retardant coatings (TTBAH, ATBAH-10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorus were inferior to those with phosphorus only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, complete combustion time of ATBAHs were $259^{\sim}347$ seconds, which means that the prepared coatings are good flame-retardant. With the $45^{\circ}$ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are first grade. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of $30^{\sim}35%$, which proves good flame retardancy of the prepared coatings. from the result of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds. it was found that the coatings containing both phosphorus and chlorine show higher flame retardancy than the coatings containing only phosphorus. This indicates that there exists, some synergy effect between coexisting phosphorus and chlorine.

Application of Modified Polyesters Containing Phosphorus/Chlorine to PU Flame-Retardant Coatings (인과 염소 함유 변성폴리에스테르의 PU 난연도료에의 적용)

  • Park, Hong-Soo;Kim, Song-Hyoung;Hong, Seok-Young;Yoo, Gyu-Yeol;Ahn, Sung-Hwan;Hahm, Hyun-Sik;Kim, Seung-Jin;Kim, Young-Geun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.31-46
    • /
    • 2007
  • This study was focused on the maximization of flame-retardancy of polyesters by a synergism of simultaneously introduced chlorine and phosphorus into polymer chains of modified polyesters. To prepare modified polyesters, reaction intermediates, TD-adduct (prepared from trimethylolpropane/2,4-dichlorobenzoic acid (2,4-DCBA)) and TMBO (prepared from tetramethylene bis(orthophosphate)), were prepared first, then condensation polymerization of the prepared intermediates, adipic acid, and 1,4-butanediol were carried out. In the condensation polymerization, the content of phosphorus was fixed to be 2%, and the content of 2,4-DCBA that provides chlorine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing chlorine and phosphorus as ABTT-10C, -20C, -30C. Two-component PU flame-retardant coatings (ABTTC, ABTTC-10C, ABTTC-20C, ABTTC-30C) were prepared by the curing of synthesized ABTTs with a curing agent of allophanate/trimer at room temperature. To examine the film properties of the prepared PU flame-retardant coatings, film specimens were prepared with the prepared coatings. The film properties of ABTTC, ABTTC-10C and ABTTC-20C, which contain 0, 10 and 20wt% 2,4-DCBA, respectively, were proved to be good, whereas the film properties of ABTTC-30C, which contains 30wt% 2,4-DCBA, was proved to be a little bit poor. Two kinds of flame retardancy tests, $^{\circ}45Meckel$ burner method and LOI method were performed. With the $^{\circ}45Meckel$ burner method, three flame-retardant coatings except ABTTC showed less than 3.4cm of char length, and showed less than 2 seconds of afterflaming and afterglow. From this result, the prepared flame-retardant coatings were proved to have the 1st grade flame retardancy. With the LOI method, the LOI values of the coatings containing more than 10wt% 2,4-DCBA were higher than 30%, which means that the coatings possess good flame retardancy. From these results, it was found that synergistic effect in flame retardancy was taken place by the introduced phosphorus and chlorine.

Preparation and Physical Properties of PU Flame-Retardant Coatings Using Benzoic Acid Modified Polyester Containing Phosphorus and HDI-Trimer (인 함유 벤조산 변성폴리에스테르와 HDI-Trimer에 의한 PU 난연도료의 제조 및 도막물성)

  • Lee, Ae-Ri;You, Hyuk-Jae;Chung, Dong-Jin;Hahm, Hyun-Sik;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • PU flame-retardant coatings (APHD) containing phosphorous were prepared by blending of hexamethylene diisocyanate-trimer, white pigment, dispersing agent, flowing agent, and previously prepared benzoic acid modified polyester (APTB) that contains phosphorous. Physical properties of the prepared APHD were examined. With the introduction of BZA (contained in APTB), the film viscosity and film hardness of APHD decreased. With the introduction of caprolactone group, the flexibility, impact resistance, accelerated weathering resistance of APTBs increased. Flame retardancy of the coatings was tested. In a vertical burning method, APHD shows 210${\sim}$313 seconds, and in a $45^{\circ}$ Meckel burner method, shows 1.3${\sim}$4.0$cm^2$ of char length, which indicates that the coatings are good flame-retardant coatings. Moreover, the amount of afterglow and flame retardancy of the coatings are decreased with increasing BZA content.

A Study on the Fire Safety of Polypropylene Powder Coatings with Flame Retardant (난연성을 갖는 폴리프로필렌 분말도료의 화재안전성 연구)

  • Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.17-22
    • /
    • 2013
  • The production of flame-retardant polypropylene powder coating with the addition of flame retardant (PP) controlled rheology (CR) and polypropylene, were discussed comparing the mechanical properties, such as safety and topical coating properties. Mechanical properties measurements showed almost the same as AA-1 where the flame retardant is not added. These results appear to, and because it is excellent in compatibility with polypropylene and flame retardant. Physical properties of the coating film, a test piece flame retardant organic is added, although it shows the physical properties of the coating film was stable, did not show the physical properties satisfactory is the test piece flame retardant of weapons has been added. In the safety of the topic, AA-4, AA-5 the results of thermal analysis but it is excellent, the LOI is excellent in 27.8 vol% 27.0 vol% in AA-4 and AA-2, AA-3, and 27.4 vol%, did not show many obstacles flame AA-5 result UL94.