DOI QR코드

DOI QR Code

Application of Isocyanate and Modified Polyester Containing Phosphorous and Chlorine to Crosslinked PU Flame-Retardant Coatings

인과 염소 함유 변성폴리에스터/이소시아네이트 가교 폴리머의 PU 난연도료에의 적용

  • Park, Hong-Soo (Department of Chemical Engineering, MyongJi University) ;
  • Kim, Song-Hyoung (Department of Chemical Engineering, MyongJi University) ;
  • Ahn, Sung-Hwan (Department of Chemical Engineering, MyongJi University) ;
  • Yoo, Gyu-Yeol (Department of Chemical Engineering, MyongJi University) ;
  • Hahm, Hyun-Sik (Department of Chemical Engineering, MyongJi University)
  • 박홍수 (명지대학교 공과대학 화학공학과) ;
  • 김송형 (명지대학교 공과대학 화학공학과) ;
  • 안성환 (명지대학교 공과대학 화학공학과) ;
  • 유규열 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과)
  • Published : 2007.06.30

Abstract

In order to obtain the maximum flame retardancy with the minimal deterioration of physical properties of PU flame-retardant coatings, chlorine and phosphorous functional groups were introduced into the pre-polymer of modified polyesters. In the first step, the tetramethylene bis(orthophosphate) (TBOP) and neohexanediol dichloroacetate (DCA-adduct) intermediates were synthesized. In the second step, 1,4-butanediol and adipic acid monomers were polymerized with the two kind of intermediates to obtain copolymer. The modified polyesters containing chlorine and phosphorous (ATBA-10C, -20C, and -30C) were synthesized by adjusting the contents of chlorine compound (dichloroacetic acid, 10, 20, 30 wt%) with fixed the content of phosphorous compound (2 wt%). The PU flame-retardant coatings (TTBAH -10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorous were inferior to those with phosphorous only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, Complete combustion time of ATBAHs were $259^{\sim}347$ seconds, which means that the prepared coatings are good flame-retardant. With the $45^{\circ}$ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are 1st grade flame retardancy. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of $30^{\sim}35%$, which proves good flame retardancy of the prepared coatings. From the results of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds, it was found that the coatings containing both phosphorous and chlorine show higher flame retardancy than the coatings containing phosphorous alone. This indicates that some synergy effect of flame retardancy exists between phosphorous and chlorine.

Keywords

References

  1. J. Wang, Huagong Xinxing Cailiao, 33(10), 21 (2005)
  2. Y. X. Ou, J. H. Wu, and J. R. Wang, Suliao Keji, 1, 1 (2002)
  3. J. Bums, K. U. Voorhis, G. Hairston, and W. Stidham, 'Articles of Enhanced Flammability Resistance', U. S. Pat. Appl, Publ., 287894A1 (2005)
  4. D. A. Ward, 'Insulated Fireproofed Barriers or Curtains and Their Preparation', Brit. UK Pat. Appl., 2395461A1 (2004)
  5. C. H. jung, H. J. Park, S. R. Kim, J. P. Wu, M. S. Kim, and H. S. Park, Polymer(Korea), 26(2), 200 (2002)
  6. I. M. Yang, S. R. Kim, H. J. Park, H. S. Hahm, J. P. Wu, and H. S. Park, Polymer(Korea), 26(2), 193 (2002) https://doi.org/10.1016/0032-3861(85)90029-1
  7. E. K. Park, I. M. Yang, D. W. Kim, K. H. Hwang, and H. S. Park, Polymer(Korea), 25(3), 391 (2001)
  8. S. Aikawa, 'Method for Recycling Halogen-Containing Synthesis Resin Wastes without Generating Dioxins', Jpn, Kokai Tokyo Koho, 210969A2 (2004)
  9. H. J. Jo, I. W. Shim, H. S. Park, I. M. Yang, and S. J. Kim, J. Kor. Oil Chem. Soc., 23(3), 252 (2006)
  10. L. C. Gupta and A. Dhuldhoya, 'Flame Retardant Polyurethane Systems, and Related Methods and Uses', U. S. Pat. Appl. Publ., 160978Al (2006)
  11. H. S. Park, H. J. You, I. W. Shim, H. J. Jo. and H. S. Hahm, Synthesis and Film Evaluation of PU Flame -Retardant Coatings Using Tri -PhosphorousContaining Modified Polyesters, World Congress of Chemical Engineering, 7th Glasgow, United Kingdom, July 10-14, (2005)
  12. J. Wang, G. Li, S. Yang, and J. Jiang, J. Appl. Polym. Sci., 91(2), 1193 (2004) https://doi.org/10.1002/app.13192
  13. I. W. Shim, H. J. Jo, H. S. Park, S. K. Kim, Y.G. Kim, Polymer(Korea), 30(3), 238 (2006)
  14. W. L. F. Armarego and D. D. Perrin, 'Purification of Laboratory Chemicals', 4th ed., Reed Educational and Professional Pub, Ltd., Oxford (1996)
  15. S. Sato, S. Hisama, and T. Sakakibara, 'Preparation and Purification of N-(a-alkoxyethyl) formarnides', Jpn. Kokai Tokyo Koho 06179644A2 (1994)
  16. S. Kanayama, K. Katayama, H. Takahashi, and M. Kamihara, 'Purification of Aqueous Acrylamide Solution with Cation Exchanges', Jpn. Kokai Tokyo Koho, 10114731A2 (1998)
  17. H. J. Yoo and H. J. Lee, J. Kor. Fiber Soc., 34(7), 451 (1997)
  18. Y. Tanaka and T. Morikawa, Kogaku to Kogyo(Osaka japan), 48(10), 387 (1974)
  19. A. E. Garavaglia, C. A. Perkins, and M. D. Powers, 'Coatings at High Bath Concentration and Low Wet Pick-up of Materials Such as Nonwovens Using a Brush Spray Application', Eur. Pat. Appl., EP 594983Al (1994)
  20. C. Jama, A. Quede, P. Goundmand, O. Dessaux, M. Le Bras, R. Delobel, S. Bourbigot, J. W. Gilman, and T. Kashiwagi, 'Fire Retardancy and Thermal Stability of Materials Coated by Organosilicon Thin Films Using a Cold Remote Plasma Process', ACS Sympo. Series : Fire and Polymers, 797, 200-213 (2001)
  21. J. W. Lyons, J. Fire and Flamm., 1, 302 (1970)
  22. J. D. Zech and E. C. Ford, Jr., 'Polyhydroxy Phosphate Esters', U. S. Patent 3,309,427 (1967)
  23. K. J. Seo, 'Preparation and Characterization of Polyurethane Flame Retardant Coatings Using Pyrophosphoric-Containing Modified Polyester /TDI-Adduct, M. S. Dissertation, Myongji Univ., Korea (1999)
  24. H. J. Lanson, Encyclopedia of Polymer Science and Engineering', 2nd ed., vol. 1, p. 656, John Wiley & Sons, Inc., New York (1985)
  25. M. Vayer, C. Serre, N. Boyard, C. Sinturel, and R. Erre, 37(10), 2043 (2002) https://doi.org/10.1023/A:1015263618720
  26. L. H. Tagle and F. R. Diaz, Thermochimica, 200, 281 (1992) https://doi.org/10.1016/0040-6031(92)85120-K
  27. H. Zhao, Y. Z. Wang, D. Y. Wang, B. Wu, D. Q. Chen, X. L. Wang, and K. K. Yang, Polymer Degradation and Stability. 80(10), 135 (2003) https://doi.org/10.1016/S0141-3910(02)00394-4
  28. L. Castellani, D. Trielli, F. Peruzzotti, and E. Albizzati, 'Self- Extinguishing Cable with Low -Lovel Production of Fumes and Flame- Retardant Composition Used Therein', Eur Pat. Appl., EP 1043733Al (2000)
  29. M. Y. Wang, A. R. Horrocks, S. Horrocks, M. E. Hall, J. S. Pearson, and S. Clegg, J. Fire Science, 18(4), 265 (2000)
  30. S. W. Zhu and W. F. Shi, Polymer Degra - dation and Stability, 75(3), 543 (2002) https://doi.org/10.1016/S0141-3910(01)00257-9
  31. S. R. Kim, 'Synthesis of Modified Polyesters Containing Phosphorus/Chlorine and Their Application to PU FlameRetardant Coatings', M. S. Dissertation, Myongji Univ., Yongin, Korea (2003)
  32. W. C. Kuryla and A. J. Papa, 'Flame Retardancy of Polymeric Meterials', Vol. 4, Marcel Dekker, Inc., New York (1982)
  33. P. J. Davies, A. R. Horrocks, and A. Alderson, Fire and Materials, 26(4-5), 235 (2002)