Physical Properties and Flame-Retardant Effects of Polyurethane Coatings Containing Pyrophosphoric Lactone Modified Polyesters

파이로포스포릭 락톤 변성 폴리에스터를 함유한 폴리우레탄 도료의 물성 및 난연 효과

  • 정동진 (명지대학교 공과대학 화학공학과) ;
  • 김성래 (명지대학교 공과대학 화학공학과) ;
  • 박형진 (명지대학교 공과대학 화학공학과) ;
  • 박홍수 (명지대학교 공과대학 화학공학과) ;
  • 김승진 (한국건자재시험연구원)
  • Published : 2003.05.01

Abstract

Pyrophosphoric lactone modified polyester (PATT) containing two phosphorous functional groups in one unit structure was synthesized to prepare a non-toxic reactive flame-retardant coatings. Then the PATT was cured at room temperature with isocyanate, toluene diisocyanate-isocyanurate , to get a two-component polyurethane flame-retardant coatings (PIPUC). Comparing physical properties of the films of PIPUC with those of film of non-flame-retardant coatings, there was no deterioration observed in physical properties by the introduction of a flame-retarding component into the resin. We found that the char lengths measured by 45$^{\circ}$ Meckel burner method were 3.1∼4.4 cm and LOI values recorded 27∼30%. These results indicate that the coating prepared in this study is a good flame-retardant. The surface structure of coatings investigated with SEM does not show any defects and phase separation.

무독성의 반응형 난연 도료를 제조할 목적으로 모체수지 1개의 구조단위 속에 2개의 인산기를 보유한 파이로포스포릭 락톤 변성 폴리에스터 (PATT)를 합성하고, PATT에 이소시아네이트인 toluene diisocyanate-isocyanurate를 상온경화시켜 2성분계 폴리우레탄 난연 도료(PIPUC)를 제조하였다. PIPUC로서 도막제작 후 비난연 도료와의 도막물성을 비교한 결과 난연 성분 도입에 따른 난연 도료의 물성이 저하되지 않음을 알았다. 난연성 시험 중 45$^{\circ}$ Meckel burner 법에서는 탄화길이가 3.1~4.4 cm를, LOI법에서는 LOI 27~30%를 각각 나타냄으로써 양호한 난연 효과를 보여주었고, SEM에 의한 표면 도막을 관찰한 결과 도막의 결함이나 상분리 현상이 생기지 않음을 관찰하였다.

Keywords

References

  1. Fire Retardant Materials A.R.Horrock;D.Price
  2. Ind. Finish. v.66 H.Anon
  3. J. Cool. Technol. v.62 no.787 S.H.Shoemaker
  4. J. Appl.Polym.Sci v.70 H.S.Park;K.J.Ha;J.H.Keun;T.O.Kim https://doi.org/10.1002/(SICI)1097-4628(19981031)70:5<913::AID-APP11>3.0.CO;2-U
  5. Jpn. Patent 07109377 A2 Y.Okano;S.Oosuga;K.Oomori
  6. J. Coat. Technol v.66 no.839 E.Weil;B.McSwigan
  7. J. Coat. Technol. v.71 no.899 H.S.Park;S.Y.Kwon;K.J.Seo;W.B.Im;J.P.Wu;S.K.Kim
  8. J. Coat.Technol. v.57 no.723 P.I.Kordomenos;K.C.Erisch;H.X.Xiao;N.Sabbah
  9. J. Kor. Fiber Soc. v.34 H.J.Yoo;H.J.Lee
  10. Ph. D. Dissertation, Myongji Univ. J.H.Keun
  11. J. Kor. Oil Chem. Soc. v.7 no.2 H.S.Park;M.S.Pyoun
  12. Flame Retardancy of Polymeric Materials v.4 W.C.Kuryal;A.J.Papa
  13. J. Appl. Polym. Sci. v.80 H.S.Park;D.W.Kim;K.H.Hwang;B.S.Yoon;J.P.Wu;J.W.Park;H.S.Hahm;W.B.Im https://doi.org/10.1002/app.1337
  14. U.S. Patent 3,407,150 M.Wismer;H.P.Poerge;P.R.Mosso;J.F.Foote
  15. J. Coat. Technol. v.61 no.772 T.A.Misev
  16. J. Coat. Technol. v.64 no.815 A.T.Erciyes;F.S.Erkal;O.S.Kabaskal
  17. J. Oil Colour Chem. Assoc. v.77 no.2 F.Dorrego;M.P.Luxan;M.Ruiz
  18. Mod. Paint Coat. v.76 no.7 R.F.Baker;S.L.Knight
  19. Encyclopedia of Polymer Science Engineering(2nd ed.) v.1 H.J.Lanson
  20. U.S. Patent 4,104,242 J.Kochanowski;A.D.Wambach
  21. Flame Retardancy of Polymeric Materials v.3 W.C.Kuryla;A.J.Papa
  22. Plastics Compounding v.10 no.3 J.Green
  23. Handbook of Coating Additives v.1 L.J.Calbo