DOI QR코드

DOI QR Code

인과 염소 함유 변성폴리에스터와 HDI-Trimer에 의한 PU 난연도료의 제조 및 도막특성화

Preparation and Characterization of PU Flame-Retardant Coatings Using Modified Polyester Containing Phosphorus/Chlorine and HDI-Trimer

  • 박홍수 (명지대학교 공과대학 화학공학과) ;
  • 김송형 (명지대학교 공과대학 화학공학과) ;
  • 홍석영 (명지대학교 공과대학 화학공학과) ;
  • 유규열 (명지대학교 공과대학 화학공학과) ;
  • 안성환 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과)
  • Park, Hong-Soo (Department of Chemical Engineering, Myongji University) ;
  • Kim, Song-Hyoung (Department of Chemical Engineering, Myongji University) ;
  • Hong, Seok-Young (Department of Chemical Engineering, Myongji University) ;
  • Yoo, Gyu-Yeol (Department of Chemical Engineering, Myongji University) ;
  • Ahn, Sung-Hwan (Department of Chemical Engineering, Myongji University) ;
  • Hahm, Hyun-Sik (Department of Chemical Engineering, Myongji University)
  • 발행 : 2006.12.31

초록

The PU flame-retardant coatings (TTBAH, ATBAH-10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorus were inferior to those with phosphorus only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, complete combustion time of ATBAHs were $259^{\sim}347$ seconds, which means that the prepared coatings are good flame-retardant. With the $45^{\circ}$ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are first grade. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of $30^{\sim}35%$, which proves good flame retardancy of the prepared coatings. from the result of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds. it was found that the coatings containing both phosphorus and chlorine show higher flame retardancy than the coatings containing only phosphorus. This indicates that there exists, some synergy effect between coexisting phosphorus and chlorine.

키워드

참고문헌

  1. H. J. Jin, F. Zhou, L. B. Wang, and K. Lu, Effect of Plastic Deformation on Thermal Stability in Metallic Glasses, Scripta Materialia, 44(7), 1083-1087 (2001) https://doi.org/10.1016/S1359-6462(01)00656-X
  2. T. L. Zhang, S. J. Zhang, and Z. Jia, Synthesis of Highly Reactive Flame Retardant Polyether Polyol, Yingyong Huaxcue, 21(3), 301-304 (2004)
  3. A. Keneko, Injection Molding of ABS/PVC Blended Flame Retardant Resins, Plastics Age, 23(12), 107-110 (1997)
  4. H. Amano and H. Kino, 'Heat-Resistant Surface-Treated Powder for Engineering Plastic Addictive', Jpn. Kokai Tokyo Koho, 210876A2 (2004)
  5. Q. W. Xu, R. Fang, G. J. Wang, and L. Liu, Study on the Evaluation System of the Charring Layer Structure of the Intumescent Fire- Retardant Coatings, Jianzhu Cailiao Xuebao, 9(1), 46-51 (2006)
  6. G. J. Griffin, A. D. Bicknell, and T. J. Brown, Studies on the Effect of Atmospheric Oxygen Content on the Thermal Resistance of Intumescent, Fire-Retardant Coatings, J. Fire Sciences, 23(4), 303-328 (2005) https://doi.org/10.1177/0734904105048598
  7. E. Kakikura, T. Sasaki, Y. Noguchi, and K. Itagaki, Performance Advantages of Polycrystalline Alumina Fiber Non-Intumescent Mat in Catalytic Converters, Soc. Automotive Engineers, SP-1944, 237-242 (2005)
  8. S. Karatas, Z. Hosgor, Y. Menceloglu, K. A. Yusuf, and A. Gungor, Synthesis and Characterization of Flame-Retarding UV-curable Organic-Inorganic Hybrid Coatings, J. Appl. Polym. Sci., 102(2), 1906-1914 (2006) https://doi.org/10.1002/app.24274
  9. C. H. Jung, H. J. Park, S. R. Km, J. P. Wu, M. S. Kim, and H. S. Park, Preparation and Characterization of Polymethane Flame-Retardant Coatings Containing Trichloro Lactone Modified Polyesters, Polymer(Korea), 26(2), 200-208 (2002)
  10. I. M. Yang, S. R. Kim, H. J. Park, H. S. Hahm, J. P. Wu, and H. S. Park, Physical Properties and Flame Retardancy of PU Coatings Polymerized with Two Different Types of Isocyanates and Dichloro-Polyester Polyol, Polymer (Korea), 26(2), 193-199 (2002) https://doi.org/10.1016/0032-3861(85)90029-1
  11. E. K. Park, I. M. Yang, D. W. Kim, K. H. Hwang, and H. S. Park, Synthesis and Characterization of PU Flame- Retardant Coatings Using Tribromo Modified Polyesters, Polymer(Korea), 25(3), 391-398 (2001)
  12. S. H. Mansour, J. N. Asaad, S. L. Abd-EL-Messieh, Synthesis and Characterization of Brominated Polyester Composites, J. Appl. Polym. Sci., 102(2), 1356-1365 (2006) https://doi.org/10.1002/app.24129
  13. P. Lipkowski, S. J. Grabowski, and J. Leszczynsky, Properties of the Halogen-Hydride Interaction : An Ab Initio and Atoms in Molecules Analysis, J. Physical Chemistry A, 110(34), 10296-10302 (2006) https://doi.org/10.1021/jp062289y
  14. M. Jimenez, S. Duquesne, and S. Bourbigot, Characteration of the Performance of an Intumescent Fire Protective Coating, Surface and Coatings Technol., 201(3-4), 979-987 (2008) https://doi.org/10.1016/j.surfcoat.2006.01.026
  15. G. M. Armstrong, 'Fire Retardant Thermosetting Compositions with Liquid and Particulate Phosphorus Containing Compounds', Brit. UK Pat. Appl., 2417030A1 (2006)
  16. P. I Kordomenos, K. C. Frisch, H. X. Xiao, and N. Sabbah, Coating Compositions Based on Acrylic-Polyurethane Interpenetrating Polymer Networks, J. Coat Technol., 57(723), 23 (1985)
  17. S. V. Levchik and E. D. Well, Thermal Decomposition, Combustion and Fire-Retardancy of Polyurethanes-A Review of the Recent Literature, Polym International, 53(11), 1586-1610 (2004)
  18. A. Toldy, A. Szabo, P. Anna, A. Szep, G. Bertalan, G. Marosi, W. Krause,. and S. Horold, 'Flame Retardant Mechanism and Application of Synergistic Combinations of Phosphinates', Proceedings of the Conference on Recent Advances in Flame Retardancy of Polymeric Materials, 15, 79-87 (2004)
  19. S. H. Ann, I. W. Shim, H. J. Jo, H. S. Hahm, H. S. Park, and Y. C. Em, Synthesis and Properties of Modified Polyesters Containing Phosphorus and Chlorine for Flame-Retardant Coatings, J. Kor. Oil chem. Soc, 23(2), 99-109 (2006)
  20. A. E. Garavaglia, C. A. Perkins, and M. D. Powers, 'Coatings at High Bath Concentration and Low Wet Pick-up of Materials such as Nonwovens Using a Brush Spray Application', Eur, Pat. Appl, EP 594983A1 (1994)
  21. C. Jama, A. Quede, P. Goudmand, O. Dessaux, M. Le Bras, R. Delobel, S Bourbigot, J. W. Gilman, and T. Kashiwagi, 'Fire Retardancy and Thermal Stability of Materials Coated by Organosilicon Thin Films Using a Gold Remote Plasma Process', ACS Sympo. Series : Fire and Polymers, 797, 200-213 (2001)
  22. J. W. Lyons, Mechanisms of Fire Retardation with Phosphorus Compound : Some Speculation, J. Fire and Flamm., 1, 302-311 (1970)
  23. L. Castellani, D, Trielli, F. Peruzzatti, and E. Albizzati, 'Self-Extinguishing Cable with Low-Level Production of Fumes and Flame-Retardant Composition Used Therein', Eur. Pat. Appl., EP 1043733A1 (2000)
  24. M. Y. Wang, A. R. Horrocks, S. Horrocks, M. E. Hall, J. S. Pearson, and S. Clegg, Flame Retardant Textile Back-Coatings. Part 1 : Antimony-Halogen System Interactions and the Effect of Replacement by Phosphorus-Containing Agents, J. Fire Science, 18(4), 265-294 (2000) https://doi.org/10.1177/073490410001800402
  25. S. W. Zhu and W. F. Shi, Flame Retardant Mechanism of Hyperbranched Polyurethane Acrylates used for UV Curable Flame Retardant Coatings, Polym. Degradation and Stability, 75(3), 543-547 (2002) https://doi.org/10.1016/S0141-3910(01)00257-9
  26. S. R. Kim, 'Synthesis of Modified Polyesters Containing Phosphorus/ Chlorine and Their Application to PU Flame-Retardant Coatings', M. S. Dissertation, Myongji Univ., Yongin, Korea (2003)
  27. W. C. Kuryla and A. J. Papa, 'Flame Retardancy Polymeric Materials', Vol. 4, Marcel Dekker, Inc., New York (1982)
  28. P. J. Davies, A. R. Horrocks, and A. Alderson, Possible Phosphorus/Halogen Synergism in Flame Retardant Textile Back Coatings, Fire and Materials 26(4-5), 235-242 (2002) https://doi.org/10.1002/fam.801