• Title/Summary/Keyword: fixed point theory

Search Result 204, Processing Time 0.034 seconds

EXISTENCE OF POSITIVE SOLUTIONS FOR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • In this paper, we study singular Dirichlet boundary value problems involving ϕ-Laplacian. Using fixed point index theory, the existence of positive solutions is established under the assumption that the nonlinearity f = f(u) has a positive falling zero and is either superlinear or sublinear at u = 0.

Strong Convergence Theorems for Common Points of a Finite Family of Accretive Operators

  • Jeong, Jae Ug;Kim, Soo Hwan
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.445-464
    • /
    • 2019
  • In this paper, we propose a new iterative algorithm generated by a finite family of accretive operators in a q-uniformly smooth Banach space. We prove the strong convergence of the proposed iterative algorithm. The results presented in this paper are interesting extensions and improvements of known results of Qin et al. [Fixed Point Theory Appl. 2014(2014): 166], Kim and Xu [Nonlinear Anal. 61(2005), 51-60] and Benavides et al. [Math. Nachr. 248(2003), 62-71].

Approximating Common Fixed Points of One-step Iterative Scheme with Error for Asymptotically Quasi-nonexpansive Type Nonself-Mappings

  • Puturong, Narongrit
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.667-674
    • /
    • 2009
  • In this paper, a new one-step iterative scheme with error for approximating common fixed points of asymptotically quasi-nonexpansive type nonself-mappings in Banach space is defined. The results obtained in this paper extend and improve the recent ones, announced by H. Y. Zhou, Y. J. Cho, and S. M. Kang [Zhou et al.,(2007), namely, A new iterative algorithm for approximating common fixed points for asymptotically non-expansive mappings, published to Fixed Point Theory and Applications 2007 : 1-9], and many others.

Physical property control for a batch polymerization reactor

  • Kim, In-Sun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.263-266
    • /
    • 1996
  • A method to determine an optimal temperature trajectory that guarantees polymer products having controlled molecular weight distribution and desired values of molecular weight is presented. The coordinate transformation method and the optimal control theory are applied to a batch PMMA polymerization system to calculate the optimal temperature trajectory. Coordinate transformation method converts the original fixed-end-point, free-end-time problem to a free-end-point, fixed-end-time problem. The idea is that by making the reactor temperature track the optimal temperature trajectory one may be able to produce polymer products having the prespecified physical property in a minimum time. The on-line control experiments with the PID control algorithm have been conducted to establish the validity of the scheme proposed in this study. The experimental results show that prespecified polymer product could be obtained with tracking the calculated optimal temperature trajectory.

  • PDF

NONLOCAL BOUNDARY VALUE PROBLEMS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS

  • Asawasamrit, Suphawat;Kijjathanakorn, Atthapol;Ntouyas, Sotiris K.;Tariboon, Jessada
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1639-1657
    • /
    • 2018
  • In this paper, we initiate the study of boundary value problems involving Hilfer fractional derivatives. Several new existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating our results are also presented.

POSITIVE COEXISTENCE FOR A SIMPLE FOOD CHAIN MODEL WITH RATIO-DEPENDENT FUNCTIONAL RESPONSE AND CROSS-DIFFUSION

  • Ko, Won-Lyul;Ahn, In-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.701-717
    • /
    • 2006
  • The positive coexistence of a simple food chain model with ratio-dependent functional response and cross-diffusion is discussed. Especially, when a cross-diffusion is small enough, the existence of positive solutions of the system concerned can be expected. The extinction conditions for all three interacting species and for one or two of three species are studied. Moreover, when a cross-diffusion is sufficiently large, the extinction of prey species with cross-diffusion interaction to predator occurs. The method employed is the comparison argument for elliptic problem and fixed point theory in a positive cone on a Banach space.

CONTROLLABILITY OF SECOND ORDER SEMI-LINEAR NEUTRAL IMPULSIVE DIFFERENTIAL INCLUSIONS ON UNBOUNDED DOMAIN WITH INFINITE DELAY IN BANACH SPACES

  • Chalishajar, Dimplekumar N.;Acharya, Falguni S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.813-838
    • /
    • 2011
  • In this paper, we prove sufficient conditions for controllability of second order semi-linear neutral impulsive differential inclusions on unbounded domain with infinite delay in Banach spaces using the theory of strongly continuous Cosine families. We shall rely on a fixed point theorem due to Ma for multi-valued maps. The controllability results in infinite dimensional space has been proved without compactness on the family of Cosine operators.

Some minimization theorems in generating spaces of quasi-metric family and applications

  • Jung, Jong-Soo;Lee, Byung-Soo;Cho, Yeol-Je
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.565-585
    • /
    • 1996
  • In 1976, Caristi [1] established a celebrated fixed point theorem in complete metric spaces, which is a very useful tool in the theory of nonlinear analysis. Since then, several generalizations of the theorem were given by a number of authors: for instances, generalizations for single-valued mappings were given by Downing and Kirk [4], Park [11] and Siegel [13], and the multi-valued versions of the theorem were obtained by Chang and Luo [3], and Mizoguchi and Takahashi [10].

  • PDF

S-ASYMPTOTICALLY ω-PERIODIC MILD SOLUTIONS FOR THE SYSTEMS OF DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT IN BANACH SPACES

  • Lee, Hyun Mork;Jang, Hyun Ho;Yun, Chan Mi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.13-27
    • /
    • 2018
  • By using of the Banach fixed point theorem, the theory of a strongly continuous semigroup of operators and resolvent operator, we investigate the existence and uniqueness of S-asymptotically ${\omega}-periodic$ mild solutions for some differential (integrodifferential) equations with piecewise constant argument when specially ${\omega}$ is an integer.

Approximating Coupled Solutions of Coupled PBVPs of Non-linear First Order Ordinary Differential Equations

  • Dhage, Bapurao Chandrabhan
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.221-233
    • /
    • 2016
  • The present paper proposes a new monotone iteration method for existence as well as approximation of the coupled solutions for a coupled periodic boundary value problem of first order ordinary nonlinear differential equations. A new hybrid coupled fixed point theorem involving the Dhage iteration principle is proved in a partially ordered normed linear space and applied to the coupled periodic boundary value problems for proving the main existence and approximation results of this paper. An algorithm for the coupled solutions is developed and it is shown that the sequences of successive approximations defined in a certain way converge monotonically to the coupled solutions of the related differential equations under some suitable mixed hybrid conditions. A numerical example is also indicated to illustrate the abstract theory developed in the paper.