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SOME MINIMIZATION THEOREMS
IN GENERATING SPACES
OF QUASI-METRIC FAMILY
AND APPLICATIONS

JoxGg Soo Junag, Byuxa Soo LEe aND YEkoL JE CHO

1. Introduction

In 1976. Caristi [1] established a celebrated fxed point theorem in
complete metric spaces, which is a very useful tocl 1 the theory of non-
linear analysis. Since then, several generalizations of the theorem were
given by a number of authors: for instances, gencralizations for single-
valued mappings were given by Dowuning and Kirk [4], Park [11] and
Siegel [13], and the multi-valued versions of the theorem were obtained
by Chang and Luo [3], and Mizoguchi and Takal:ashi [10].

Later. Takahashi [14] proved a nonconvex minimization theorem in
the complete metric spaces, which was used to obtain Caristi’s fixed
point theorem and some existence theorems. In particular, Ume [15]
generalized the results of Takahashi [14] using ¢ continuous mapping
satisfying a certain condition.

On the other hand, Kaleva and Seikkala [9] introduced a concept
of a fuzzy metric space which generalizes the notion of a metric space
by setting the distance between two points to be a nonnegative fuzzy
number, and proved some fixed point theorems. Since then, Jung et
al. [8] established a Takahashi-type minimizatior theorem [14] in com-
plete fuzzy metric spaces. By using their minimization theorem, they
obtained the analogoue of Downing-Kirk’s fixed »oint theorem.
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Very recently, Chang et al. [2] gave a defintion of generating spaces
of quasi-metric family, which generalizes those of fuzzy metric spaces
in the sense of Kaleva and Seikkala [9] and Menger probabilstic metric
spaces [12], and some properties and examples of the spaces. They
also gave several fixed point theorems and Takahashi-type minimization
theorems in complete generating spaces of quasi-metric family.

In this paper, we establish new nonconvex minimization theorems in
complete genereating spaces of quasi-metric family. As consequences,
we generealize results in [14, 15] and Downing-Kirk’s fixed point theo-
rem in the same spaces. Simultaneously, applying these results to fuzzy
metric spaces and probabilistic metric spaces, we give the correspond-
ing results. Our results extend and improve upon the corresponding

results of [1, 4, 6, 7. 8, 14, 15].

2. Minimization Theorems in Generating Spaces of Quasi-
Metric Family

In this section, we first give new nonconvex minimization theorem in
generating spaces of quasi-metric family. Then we show that our results
improve those of [14, 15] and Downing-Kirk’s fixed point theorem in the
same spaces.

Now, we give the definition, some properties anc examples of gener-
ating spaces of quasi-metric family.

DEFINITON 2.1. [2] Let X be a nonempty set and {d, : a € (0,1]} be
a family of mappings d, of X x X into R™. (X,d, . o € (0,1]) is called
a generating space of quasi-metric family if it saiisfies the following
conditions:

(QM-1) da(z,y) = 0 for all o € (0,1] if and only if z =y,

(QM-2) dy(z,y) = daly, ) for all z, y € X and o € (0,1],

(QM-3) For any a € (0, 1], there exists a number p € (0, a] such that

da(z,y) < du(z,z) +du(zy). .y, 2€ X,

(QM-4) For any x, y € X, d,(z,y) is nonincreasing and left contin-
uous in .

In what follows {d, : o € (0,1}} will be called a family of quasi-
metrics.
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ExaMpLE 2.1. Let (X,d) be a metric space. Letting da(z,y) =
d(z,y) for all @ € (0,1] and z,y € X, then (X,d; is a generating space
of quasi-metric family. Furthermore, both every fuzzy metric space (see
Definition 3.1) and every probabilistic metric space (see Definition 4.1)
are the examples of generating spaces of quasi-metric family (its proof
will be given in the sections 3 and 4 below).

In [5], Fan proved that if (X.d, : & € (0,1]) is a generating space of
quasi-metric family, then there exists a topology Ty4,) on X such that
(X.T{a,y) is a Hausdorff topological space and U{(a) = {Uy(e.a) 1 € >
0, o €( 0, 1]}, @ € X, i1s a basis of neighborhoods of the point r for the
topology T4, where

Urle,a) = {y € X 1 dulz,y) < €}

Throughout the following, we assume that k& : (0,1] - (0,0c) is a
nondecreasing function satisfying the following condition:

(2.1) M= sup kla) < oc.
w€(0,1]

Now, we give our main results.

THEOREM 2.1. Let (X,d, : o € (0,1]) and (Y,é, : « € (0,1]) be
two complete generating spaces of quasi-metric family, f : X — YV
a closed mapping, and T : X — X a continuous mapping satisfying
do(Tz,Ty) < dola.Ty) and 6,(f(Ta), f(Ty)) < ¢alf(x), f(Ty)) for
every . y € X and a € (0,1]. Let v : R — R be a nondecreasing
continuous function. bounded from below and ¢ : f(X) — R a lower
semicontinuous function, bounded from below. Assume that for any
w e X with inf,cx v(&(f(2))) < (d(f(u))), theore exists v € X with
v # Tu and

max{dq(v,Tu) + dy (Tu Tv), cfda( f(0), f(Tu)) +éal f(Tu). f(T0v))]}
< k() flu)) — (e f(v)))]

for any o € (0,1], where ¢ is a given constant. Then there exists an
zo € X such that

inf ¥(o(f(x))) = v(o(f(xo)))

TCX
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Proof. Suppose inf,ex ¥(d(f(x))) < ¥(S(f(y):) for every y € X
and choose u € X with ¢¥(¢(f(u))) < oo. Then we deﬁne inductively
a sequence {u,} C X with u; = u. Suppose that u,, € X is known.
Then choose u,4; € W, such that

W, = {w € X : max{dy(w, Tu,) + do(Tu,, Tw),
(2.2) clbalf(w), f(Tun)) + éal f(Tun), f(Tw))]}
< ko) (o f(un))) — (o flw)))]}

for any a € (0,1] and

w(@(funy1))) < inf ¥(&(f(2)))

(2.3) e o
+ SO fwa))) = inf Ho(f())]

Now we prove that {u,} and { f(u,)} are Cauchy sequences in .X and
Y, respectively. In fact, if n < m, by the construction of the sequence
{un} and the hypothesis, we obtain

max{2do(Tun, Tum ), 2¢ba( f(Tun), f(Tum))}

< 35 {2y, (Tuy Ty 1), 680, (F(Tty). F(Taty )
=
(2.4) < :S max{da; (u;41,Tu;) + do; (Tu;. Tvj41),
Ay (£ 1) F(T)) + b0y (F(Tu ), F(Tuy )]}
< S b 06 u3)) — o)
< k(60 ) — (0L e
for some o, with 0 < a4, < a; <a, j =n,-,m~1, and from (2.4),
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we obtain
max{da(tn, Tm), cbal f(un), fF(Tum))}
max{d,(tn, Tun)+ 2d,(Tup, Tum)

cléu(flun), fF(Tun)) + 28,(f(Tun). fF(Tum))]}
max{d,(un, Tun), cd,(flun), f(Tun))}

+ max{2d,(Tun, Tum),2¢0,( 1 Tun), f(Tum))}

(2.5) < max{d, 'un,Tun)+du(Tun Tuy).
[ p(fun), f(Tun)) + 6u(f(Tuy), f(Tun))]}
k(p )

IN

AN

(o flun))) — (S fum)))]
< k(p)ly (¢(f(un)) (O(f(u )))
(b f(un))) — (S f(um)))]
<k O)W (f(un))) —h(¢(f(um)))]
for some p € (0,a]. Since {y(&(f(u,)))} is monotonically decrcasing

by (2.2), we also have
max{dg(tm, Tum), cdol flum), fF(Tum))}
= max{da(Um,Tum) + do(Tum, Tun),
clba(f(um)s f(Tum)) + éalf(Tum), f(Tum))]}
< k(@) [ (d(f(um))) = ¥(8(f(um)))]
= (
< R (o f(un))) — (S f(um)))]
for any a € (0,1]. Hence, from (2.5) and (2.6), we obtain
max{da(tn, Um), cdal fltn), flum)):
< max{d(un, Tum) + du(Tum, Um )s
cléu(flun), F(Tum)) + 8u( f(Tum), flum))]}
max{d, un,Tum) ey (flun), f(Tu.,))}
+max{d”(um Tum),cdu(flum), f(Tum))}
< 2k(u)[v(d(f(un))) = w(05(f( m)))]
< 2k(a)[v (o (f( n))) = (o f(um)))]

(2.6)

IN

Um
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for any o € (0,1] and some g € (0,a]. On the other hand, by the
boundedness of 3 from below , there exists a finite number v such that

Y(0(f(un))) | 7. Also from the nondecreasing and the continuity of .
it follows that limn_.o ¢(f(u,)) exists. Hence for any given A > 0 and
g€ > MM (where M is a constant defined by (2.1)). there exists an ny
such that for n > ny we have

A
¥ < (o f(u )<7+~

Thus for any m > n > ng, we have

| >
13| >

0 <(o(flun))) — ¥(&(flum))) <7+

_ o~ =
Y =

Thus, for any « € (0, 1] and m > n > ng, we have

max{da(tn, Um), cba( f(un), flum))}

< 2k(“)[u’(@(f(un))) -y @(.f(”m)))]
< MM <e.

This implies that {u,} and {f(u,)} are Cauchy sequences in X and Y,
respectively. By the completeness of X and Y, there exist u € X and
v € Y such that lim, . u, = v and lim, .o f(u,) = v. Since f is
a closed mapping, f(u) = v € f(X). By the lower semicontinuity and
boundedness of ¢ from below, we have

~00 < (f(@)) < liminf 6( f(un)) = lim b(f(un)).

n—oc

So, from the nondecreasingness and the continuity of ¥, it follows that
(2.7) (o(f())) < 11111 Y(o(flun))) =7 < ¥(o(f(un)))

for any n. Letting m — ocin (2.4) and (2.6), we obtain for any « € (0. 1]

max{2da(Tun, Tu), 2cbo(f(Tuy), f(Tu))}
< k(a)[(o( flua))) — v(o(f(u)))],
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v = Tu and f(u) = f(Tu), respectively. On the other hand, by hy-
pothesis, there exists a v € X such that v # Tu and
max{da(v,Tu)+ do(Tu, Tv),
(2.8) cléa(f(v), f(Tu)) + bal f(Tu). [(Tv))]}
< k(a)[g(e(f(w) — v((f(v)))]
for any «a € (0, 1]. Hence we have
max{da(v, Tuy) + do(Tun, Tv),
cléalf(v). f(Tun)) + 0a(f(Tun), f(Tv))]}
< max{d,(v,Tu) + d,(Tu,Tv) + 2d,(Tun, Tu},
c[8u(f(v), F(Tw)) + 8,(f(Tw), f(Tv)) + 26, f(Tun). f(Tu))]}
< max{dy(v.Tu) + do(Tu,Tv),
c[da(f(v), f(Tu)) + bal f(Tu), f(Tv))]}
+ max{2d,(Tun, Ti). 2 ,L(f(Tun),f( )
< k()9S f(@))) — w(S(f(0))) + v (8(f(ua)) — v(S(f(u)))]
< k(a@)[(o(flun))) — w(e(f(v)))]

for any « € (0,1] and some p € (0,a]. This implies v € W,,. Using
(2.3), we have

20(¢(funt1))) = ¥(6(f(un))) < inf w(d(f(2))) < ¥(S(f(v))).

zeW,

Thus, by (2.7) and (2.8), we obtain
P(e(f(v))) < ¥((f(u))) < lm P((f(un))) < w(o(f(v)))-
This is a contradiction. Therefore, there exists an zy € X such that
(o f(wo))) = Illelf\ v(o(f(z).)
This completes the proof.

From Theorem 2.1, we can obtain the following Theorem 2.2 and
Theorem 2.3 which generalizes the results of Chang et al. [2] and Ume
[15], respectively.

(3]
=1
—
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THEOREM 2.2. Let (X.dy : a € (0,1]) and (Y,8, : a € (0,1])
be two complete generating spaces of quasi-metric family, f : X —
Y a closed mapping, v : R — R a nondecreasing continuous func-
tion, bounded from below and ¢ : f(X) — R a lower semicontinu-
ous function, bounded from below. Assume that for any v € X with

infoex ¥(o(f(2))) < ¥((f(u))), there exists v € X with v # u and
max{da(v,u), cba(f(v), f(u))} < k(a)[¥(d(f(u))) — v(a(f(v)))]

for any o € (0,1}, where ¢ is a given constant. Then there exists an
xg € X such that

nf D(e(f(2)) = $(&(f(20)))-

Proof. The result follows from Theorem 2.1 with T = I, where [
denotes the identity operator on X.

THEOREM 2.3. Let (X,d, : o € (0,1]) be a complete generating
space of quasi-metric family, T : X — X a continuous mapping satis-
fying do(Tz,Ty) < do(x,Ty) for every z, y € X and a € (0.1], and
¢ : X — R a lower semicontinuous function, boundesd from below. As-
sume that for any v € X with inf, cx ¢(x) < &(u), there exists v € X
with v # Tu and

do(v,Tu) + do(Tu, Tv) < k(a)[d(u) — ¢(v)]
for any o € (0,1]. Then there exists an z¢ € X such that

inf ¢(x) = ¢(xo).
re X
Proof. The result follows from Theorem 2.1 with X =Y, f = I,
¥ = I and ¢ = 1.
REMARK 2.1. (1) Theorem 5.1 in [2] is a special case of Theorem
22 with vy = L.
(2) Theorem 1 in [15] is a special case of Theorem 2.3 with X being
a metric space and k(a) = k, where k is a given constant.

For a mapping T : X — X, we denote by F(T') the set of all fixed
points of T and by T(X) the range of the mapping 7', respectively. By
applying Theorem 2.1, we have the following theorem.
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THEOREM 2.4. Let (X,dy : a € (0,1]) and (Y, 64 : a € (0,1]) be
two complete generating spaces of quasi-metric family, f : X — Y
a closed mapping and T : X — X a continuous mapping satisfying
do(T7,Ty) < da(z,Ty) and ol f(Tx), f(Ty)) < ol f(2), f(Ty)) for
every z, y € X and a € (0,1]. Let v» : R - R b( a nondecreasing
continuous function, bounded from below and ¢ : f{(X) — R a lower
semicontinuous function, bounded from below. it § : X — X be a
mapping satisfying ST =TS and

max{dy(Sz,Tx) + do(Tx, T Sx),
bal F(S), f(T2)) + bul f(Ta), §(TS))]}
< k(a)[p((f(2)) — ¢ (o(f(Sz)))]
for any ¢ € X and o € (0,1], thre ¢ is a given constant. Then there
exists an xo € X with Tzg = 19 = Sxyg.

Proof. From the hypothesis on the mapping T, it is easily shown that
T(X) = F(T). Suppose now that Tz # Sz for every € E. Then, for
every r € X, there exists Sz € X such that Tr # Sz and

max{d,(Sx,Tx)+ do(Tx,TSx),
clbal f(Sz), f(Ta)) + da(f(Ta), (T Sz))]}
< k(a)[v(d(fx)) — v(e(f(Sx)))]
For any o € (0,1]. So, from Theorem 2.1, we obtain a z € X with
P(d(f(2))) = inf,ex ¥(d(f(2))). For such a z € X, we have
0 < dp(SzT=)+d (T;,TS;)
< max{da(Sz,Tz) + do(Tz,TSz).
cloa(f(S2). f(T ))+ (f(T
< k(a)[p(e(f(2)) ~ ¥(o(f(52)))]

<0

2, [(TSz))]}

for any o € (0,1]. This is a contradiction. Therefore there exists an
rg € X with Szg = Txy. Since T(X) = F(T), we have Sxg = TSy =
STz and hence xg = Sz = Tzo. This completes the proof.

As a direct consequence of Theorem 2.4, we obtain the following re-
sult, which is a generalized form of Downing-Kirk's fixed point theorem
in generating spaces of quasi-metric family.
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COROLLARY 2.5. Let (X,ds: a € (0,1]) and (Y,84 : o € (0,1]) be
two complete generating spaces of quasi-metric family, f : X — Y a
closed mapping and ¢ : f(X) — R a lower semicontinuous function,
bounded from below. Let S : X — X be a mapping satisfying

max{da(S7,7), c6a(f(Sz), f(2))} < k(a)[(f(2)) — S(f(S2))]

for any © € X and a € (0,1], where ¢ is a given constant. Then there
exists an zg € X with Szy = zy.

Proof. The result follows from Theorem 2.4 with T =1 and ¢ = I.

REMARK 2.2. (1) When X, Y are metric spaces and k(a) = 1,
from Corollary 2.5, we obtain Downing-Kirk’s fixed point theorem [4].
Caristi’s fixed point theorem [1] is also obtained from Corollary 2.5 with
X =Y being a metric space, f = I, c=1 and k(a) = 1.

(2) When X is a metric space, an example of satisfying d(Tx,Ty) <
d{z,Ty) for every z, y € X is given in [15].

3. Versions in Fuzzy Metric Spaces

A mapping z : R — [0, 1] is called a fuzzy number. For o € (0,1] and
a fuzzy number z, the set

(@la = {u € R:a(u) > a}

is called a a-level set of . A fuzzy number z is said to be conver if
r, s, t e R, r <s <t implies

min{z(r),z(t)} < z(s).

A fuzzy number z is said to be normalif there exists a point u € R such
that z(u) = 1. If a fuzzy number z is upper semicontinuous, convex
and normal, then the a-level set of z is a closed interval [aq, b4], that
is,

[I]a = [aaa ba]a o € (07 1]»
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where the values a, = —o0 and b, = oc are admissible. A fuzzy number
z 1s sald to be nonnegative if z(u) = 0 for all v < 0. The fuzzy number
6 is defined by #(u) = 1 for u = 0 and 8(u) = 0 for u # 0.

Throughout this section, we denote by G the set of all nonnegative
upper semicontinuous normal convex fuzzy numbers and we always as-
sume that L, R : [0,1] x [0,1] — [0,1] are two functions such that
they are nondecreasing in both arguments, symmetric and L(0,0) =

0, R(1,1)=1.
Let X be a nonempty set and d: X x X — G he a mapping. Denote
(3.1) [d(z,y)]a = [Pal®,y), palz,y)], =, vy = X, 0 € (0, 1],

where [d(z,y)]4 1s the a-level set of a fuzzy number d(z,y) € G, which
is actually a closed interval of R and A,(z,y), pa 7. y) are the left and
right end points of the closed interval [d(z,y)]q, respectively.

DerFINITION 3.1. [9] The quadruple (X, d, L, R) is called a fuzzy met-
ric space if the mapping d : X x X -— G satisfies the following condi-
tions:

(FM-1

(FM-2) d(x,y) = d(y,z) for all z,y € X,

) d(x, y) = # if and only = = y,

)
(FM 3) For any r.y,z € X,

d(z

Jyl(s+1t) > L{d(r,z)(s),d(z,y)(t)) whenever s < Ay(r, z).
_<_/\( )and +t < A(2,y),

(i1) d(x,y)(s+1t) < R(d(x,z)(s),d(z,y)(t)) whenever s > A (r.z),
t> M (z,y) ands+t2/\ (r.y).

REMARK 3.1. By Theorem 3.2 in [9], we know that if (X,d,L, R)
is a fuzzy metric space with lim,_o+ R(a,a) = 0, then therc exists a
topology 74 on X such that (X,7,) 1s a Hausdorff topological space
and

Ulz) ={U.(e,a): > 0,0 € (0,1]}, =z € X,
is a basis of neighborhoods of the point z for the topology 74, where

Uple,a) = {y € X : polr,y) < €},

and ps(z,y) is the right end point of [d(z,y)]s defined by (3.1).
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PROPOSITION 3.1. [2] Let (X,d, L, R) be a fuzzy metric space with

(3.2) hm+ R(a,a) =0, 1Iim dlz,y)(t)=0, =, ye X,
a—0 00

then (X, py : a € (0,1]) is a generating space of quasi-metric family

and the topology T,y induced by the family {p.} coincides with the

fuzzy topology T; on (X,d, L, R), where [d(z,y)]o = [Ma(x,y), palz, y)]

is defined by (3.1).

Proof. Since lim,_, o d(z,y)(t) = 0, it follows that p,{(z,y) < oo for
all o € (0,1]. Next we prove that (X,p, : @ € (0 1]) is a generating
space of quasi-metric family. It is obvious that (X, g : o € (0, 1]) satis-
fies the conditions (QM-1), (QM-2) and (QM-4) in Definition 2.1. Now
we prove that it also satisfies the condition (QM-3). By the assumption
that lim,_ .o+ R(a,a) = 0, for any « € (0, 1], there exists an u € (0, qa]
such that R(u, ¢) < a. For any given x,y,z € X, lct

pulz,z) =38, pulz,y) =1t
By the definition of p,, it is easy to show that s > Aj(x,z) and t >
A](Z,y)-

(i) f s+t > Ai(x,y), then for any ¢ > 0 it follows from (FM-3)(ii)

that
d(z,y)(s +t+2¢) < R(d(x,2)(s +€),d(z,y)(t +€))

< R(p,p) < a.
Hence we have p,(z,y) < 2¢+s+t. By the arbitrariness of €, we obtain
(3.3) palT,y) < s+t =pulx,2) + pulz, y).
() U s+t < A(z,y) and u = Ay(z,y) — (s + t), then we have
1=dz,y)(Mlz,y)) =d(a,y)(u+s+1)

, 1 1
< R(d(l‘,z)(S + "2-“)7(1(27 y)(t + 5“))
< R('uwﬂ) < a,
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which is a contradiction. Therefore, the case (ii) can not happen. This
proves that (X, p, : « € (0,1]) satisfies the condition (QM-3).

Besides, by Remark 3.1, the topology 7;,, ) on the generating space
of quasi-metric family (X,p, : o € (0,1]) coincides with the fuzzy
topology 7, on the fuzzy metric space (X,d, L, Ry. This completes the
proof.

From Theorem 2.1 and Proposition 3.1, we can obtain the following:

THEOREM 3.1. Let (X;,d;,L,R), i =1, 2, b> two complete fuzzy
metrie spaces with

tlim di(z,y)(t) =0, z, ye X;, 1 =1, 2, and 1i111+ R{a,a) = 0.

o0 a—0

Let f : X\ — X, be a closed mapping, T : X; — X, a continuous
mapping satistying pia(Te, Ty) < pra(z. Ty) and paa( f(Ta), f(Ty)) <
p2a(flx), f(Ty)) for every x, y € X, and o € (0,1], where p;a(7,y)
are the right end points of [di(x,y)]. defined by (3.1). v : R — R
a nondecreasing continuous function, bounded iromn below, and ¢ :
f(X;) — R a lower semicontinuous function, bounded from below.
Assume that for any v € X; with inf,.ex, Y(o(;(2))) < ¥(o( flu))).
there exists v € X with v # Tu and

max{pa(v, Tu) + p1a(Tu, Tv),
c[paa(f(0), F(Tu)) + paa(f(Tu), f(Tv))]}
S k(a)[w((f(w))) — v(o( f(v))]

for any o € (0,1], where ¢ is a given constant. Then there exists an
ro € X such that

Ilél{ U(o(flx))) = (o flzo)))

COROLLARY 3.2. Let (X;,d;.L.R), 1 =1, 2, ke two complete fuzzy
metric spaces with

tlim‘dz(r,y)(f) =0, 7z, y€X;,t=1,2, and lim R(a,a)=20.

a0t
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Let f : X1 — X3 be a closed mapping, T : X; — X, a continuous
mapping satisfying p1o(Tz, Ty) < pra(z,Ty) and p2o(f(Tx), f(Ty)) <
p2a(f(z), f(Ty)) for every z, y € X and « € (0, 1]. where p;o(x,y) are
the right end points of [d;(z,y)]s defined by (3.1), and ¢ : f(X,) = Ra
lower semicontinuous function, bounded from below. Assume that for
any v € X with inf,cx, &(f(z)) < ¢(f(u)). there exists v € X, with
v # Tu and

max{pia(v, Tu) + pro{Tuw, Tv),
clp2al f(v), f(Tw)) + paal( f(Tw), f(Tv))]}
< kla)[¢( f(u)) — o(f())]
for any o € (0,1], where ¢ is a given constant. Then there exists an

xy € X, such that
inf ¢(f(x)) = o(f(x0)).

TEX,
Proof. The result follows from Theorem 3.1 with ¢» = I.
From Theorem 2.4 and Proposition 3.1, we also have the following;:

THEOREM 3.3. Let (X;,d,,L,R), 1 = 1, 2, be two complete fuzzy
metric spaces with

tlim di(z,y)(t) =0, v, ye X,;, t=1, 2, and lim R(a,a)=0.

a—0t

Let f : X; — X, be a closed mapping, T : X; - X, a continuous
mapping satisfying pio(Tx,Ty) < piolz,Ty) and p2a(f(Tx), f(Ty)) <
paa(f(z), f(Ty)) for every z, y € X and a € (0,1], where pio(r,y)
are the right end points of [di(r,y)]« defined by (3.1). v» : R — R
a nondecreasing continuous function, bounded from below, and ¢ :
f(X;) — R a lower semicontinuous function, bounded from below. Let
S: X, — X, be a mapping satisfying ST =TS and

max{pia(Sz,Tz) + p1a(Tz, TSx),
clpaa(f(S7), f(Tz)) + paal(f(Tx), S(TSx))}}
< k(a)[(g(f(2)) — v((f(Sz)))]
for any r € X1 and « € (0, 1], where ¢ is a given constant. Then there
exists an o € X, such that Tzy = x¢ = Sxy.

As a direct consequence, we have the following:
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COROLLARY 3.4. Let (X;.d;,L.R), i =1, 2, be two complete fuzzy
metric spaces with

tl_i‘m di(x,y{t) =0, z, y€ X,, i=1, 2, and lim R(a,a)=0.

a—0

Let f : X; — X3 be a mapping, and ¢ : f(X,) — R a lower semicontin-
uous function, bounded from below and S : X| —» X, a mapping such
that

max{p1a(Sz. ), cpaa(f(Sz), f(z))} < k(a)[o(flz)) — &(f(S))]

for any r € X, and a € (0, 1], where ¢ is a given constant and p;o(x,y)
are the right end points of [d;(r,y)] defined by (3 1). Then there exists
an ry € Xy such that Szy = xy.

REMARK 3.1. (1) Theorem 2 in [8] is a special case of Theorem 3.1
with R=max, T=1,¢v=1,c=1and k(o) = 1

(2) If we take T = I in Corollary 3.2, we can obtain Corollary 5.3 in
(2].

(3) Corollary 3.4 generalizes Theorem 3 in [§].

(4) Corollary 3.3 in [7] is also a special case of Corollary 3.4 with
R = max.

4. Versions in Probabilistic Metric Spaces

In this section, we give the corresponding results in probabilistic
metric spaces.

Throughout this section, we denote by D the set of all left continuous
distribution functions.

A function A : [0,1] x [0,1] — [0,1] is called a t- norm if the following
conditions are satisfied:

(TN-1) A(a,b) = A(b,a),

(TN-2) A(a,l) = a,
(TN-3) Oa, A(b,¢)) = D(D(a,b), o),
(TN-4) Aa,b) < Ale,d) fora < cand b <d.
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DEFINITION 4.1. [12] A triple (X, F,A) is called a Menger proba-
bilistic metric space (briefly, a Menger PM-space) if X is a nonempty
set, A is a t-norm and F : X x X — D is a mapping satisfying the
following conditions (we shall denote F(z,y) by F; 4):

(PM-1) F, y f) =1forall t > 0if and only if z := y,

(PM-2) F, 4(0) = 0,
(PM-3) F, , = F, .
(PM 4) Fp “+f) > A(F; ,(s), F. y(t))forallz, y, z€ X, s, t > 0.

REMARK 4.1. It is pointed out in [12] that if A satisfies the condition

supA(t,t) = 1, then there exists a topology 7 on X such that (X,7)
t<t
is a Hausdorff topological space and the family of sets

Up) = {Up(e,N):e>0,2€(0,1]}, pe€ X,
is a basis of neighborhoods of the point p for 7, where
Up(e,\y={z € X : F; ,(€) >1— A}

Usually, the topology 7 is called (€, A)-topology on (X, F, A).
PROPOSITION 4.1. [2] Let (X, F,\) be a Menger probabilistic met-

ric space with a t-norm /\ satisfying the condition:

(4.1) sup A(t,t) = 1.
t<i

For any a € (0,1], we define dy : X x X — R* as follows:
(4.2) do(z,y) =inf{t > 0: F, 4(t) > 1 — a}.

Then (i) (X,d, : o € (0,1]) is a generating space of quasi-metric family,
(i) the topology T4,y on (X,d, : o € (0,1]) coincides with the
(e, A)-topology T on (X, F,A).

Proof. (1) From the definition of {d, : a € (0,1]}, it is easy to see
that {d, : « € (0,1]} satisfies the conditions (QM-1) and (QM-2) in

Definition 2.1. Besides, it follows clearly that d, is nonincreasing in a.
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Next we prove that d, is left continuous in a. In fact, for any
given a; € (0,1] and € > 0, from the definitior of d,, there exists a
t1 > 0 such that t; < d,,(z,y) + € and F, 4(t,) > 1 — a;. Letting
6=F;y(t1) — (1 —a1)>0and X € (a1 — §,ay], we have

l—ay <1~ A<l - ((}'1 — 6) = I‘.l‘,.y(fl)-,
which implies that ¢, € {t > 0: F, ,(t) > 1 — A}, Hence we have
do, (. y) < da(z,y) =inf{t > 0: F, ,it)>1~A}
<ty <do (oY) +e,
which shows that d,, is left continnous in «.

Finally, we prove that (X.d,,: « € (0,1]) also satisfies the condition
(QM-3).
By the condition (4.1), for any given a € (0,1], there exists a p €
(0, o] such that
AN —p1=p)>1—oa.

Letting d,(x,z) = 0 and d,(z.y) = 4, from (4.2, for any given ¢ > 0.
we have

Folo+e)>1—p, F. (34+¢€)>1~yp

WY .

and so

Fyylo+ 8+ 2€¢) 2 A(F; {0+ €), F. y(i3+€))
>A01—p,1—p)>>1-a.
Hence we have
dolr,y) <o+ 3+2e=d,(x,2)+d,z.y)+ 26
By the arbitrariness of € > 0, we have
dal2,y) < dyla.2) +dy(z.y.

(i1) To prove the conclusion (ii), it is enough to prove that for any
e >0and o € (0,1],

do(z,y) <€ ifand onlyif F, ,(e) >1-a.

In fact, if dy(z,y) < ¢, from (4.2), we have F, ,(e — p) > 1~ a.

Conversely, if Fy y(e) > 1 — a, since F;, , is a left continuous distri-
bution function, then there exists a y > 0 such that F, (e —p) > 1—a,
and so do(z,y) < € — g < e. This completes the proof.

From Theorem 2.1 and Proposition 4.1, we ca1: obtain the following:
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THEOREM 4.1. Let (X, Fi, A;), @ = 1,2, be two complete Menger
probabilistic metric spaces with t-norms /\; satistying the condition
(4.1). Let f : X; — X, be a closed mapping, T : X; — X, a continuous
mapping satisfying

inf{t >0: Fip,ry(t) >1—a} <inf{t > 0: Fy, ry(t) > 1 - a}
and
inf{t >0: sz(j‘r)yf('[‘y)(t) > 1—(1} < inf{t >0:F, f('z),f(’]‘y)(t) > 1—‘0’}

for every x, y € X; and « € (0,1], ¥ : R — R a nondecreasing
continuous function, bounded from below, and ¢ : f(X;) — R a lower
semicontinuous function, bounded from below. Assume that for any
u € X; with inf ¢ x, ¥(¢(f(2))) < ¥(¢(f(u))), there exists a v € X,
with v # Tu and

max{inf{t > 0: Fi, 7,(t) > 1 —a}
+inf{t > 0: Fipy1o(t) > 1 —a},
cinf{t > 0: Fop) sera)(t) > 1 — o
+inf{t > 0 : Fopiru), perol(t) > 1 —all}
< K)o F(u) — B F)], o € (0,1]

where ¢ > 0 is a given constant. Then there exists an zo € X such
that

inf P(6(f(x))) = ¥l6(f(z0)))
From Theorem 2.4 and Proposition 4.1, we obtan the following:

THEOREM 4.2. Let (X,, F;,4\;), 1 = 1,2, be two complete Menger
probabilistic metric spaces with t-norms /\; satisfying the condition
(4.1). Let f : X, — X, be a closed mapping, T : X; — X, a continuous
mapping satisfying

inf{t >0: Fip, 1,(t) > 1 —a} <inf{t > 0: Fp, 1y(t) > 1~ a}
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and
in’f{t >0: FZf(Tz),f(Ty)(;t) >1- Ot}
< iIlf{t > 0: Fgf(z)yf(']‘y)(t) >1 - G‘}
for every x, y € X; and « € (0,1], ¥ : R — R a nondecreasing
continuous function, bounded from below, and ¢ : f(X,) — R a lower
semicontinuous function, bounded from below. Let S : X; — X be a
mapping satisfying ST = TS and
max{inf{t > 0: Fig, 1,.(t) >1— o}
-+ iIlf{t >0: Fipepse(t) >1— (1’}.
(‘!riIlf{f >0 Fgf(‘qr).f(f['r)(f) >1-— Cl}
+ inf{t >0: FQf('['x),f('I'Sz)(t) >1-- (lf}]}
< Ka)b(e(f(x))) — v(o(f(Sz)))], o €(0,1],
for any r € X, where ¢ > 0 is a given constant. Then there exists an
xo € X such that Tay = x9 = Sxy.

As a consequence, we have the following :

COROLLARY 4.3. Let (X;, Fi, \;), 1 = 1,2, be two complete Menger
probabilistic metric spaces with t-norms A\; satisfying the condition
(4.1), f : X, — X, a closed mapping, and ¢ : f(X;) —» R a lower
semicontinuous function, bounded from below. Let §: X, — X, be a
mapping satistying

max{inf{t > 0: Fig; (1) > 1 — a},
(fillf{t >0 FQf(Sr),f(z)(f) >1- O}}
< ka)le(f(z)) — o(f(Sx))],  « €(0,1],
for any z € X, where ¢ > 0 is a given constant. Then therc exists an
zo9 € X, such that Sxq = xy.

REMARK 4.2. (1) The corresponding results in [2, 8] are special
cases of Theorem 4.1 with A =min, T =TI and ¢ = 1.

(2) Corollary 4.3 improves upon Theorem 8 in [§]

(3) If we take X| = Xy, f =1, A =min, ¢ = 1 and k(o) = 1 in
Corollary 4.3, then we can also obtain the corresponding results in [6,

8).
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