• 제목/요약/키워드: fireproof performance

Search Result 59, Processing Time 0.03 seconds

Development of Acceleration Duability Test Method for Fireproof Spray-Applocation (옥내용 뿜칠내화피복재의 촉진내구성 시험방법 연구)

  • Kim, Dae-Hoi;Lee, Gun-Chol;Lee, Sea-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.104-105
    • /
    • 2013
  • The buildings constructed with steel structure is coated with certified fire resistive material to resist from fire. Coating materials lose their initial performances as time passes, so they need some maintenance. Fireproof spray-application also loses its performance and this performance loss of thr fireproof spray-application is very important because fire resistance of buildings depends on fireproof spray-application. So this study is to develop Acceleration durability test method of Fireproof spray-application, and use the Certification of fire resistant coating system.

  • PDF

Fire resistance assessment of precast fireproof duct slab (프리캐스트 방식 내화풍도슬래브의 화재저항성 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Kim, Se Kwon;Kim, Tae Kyun;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.669-680
    • /
    • 2020
  • In Korea, fireproof performance is evaluated through a series of fire-resistance tests for important structures, and the performance standard follows the guidelines suggested by ITA. The fireproof duct slab manufactured by combining the slab and the fireproof material with a precast method is effective in that it can eliminate the construction time of the fireproof material. In this study, a series of fire resistance tests was performed on the fire test specimens under the RWS fire scenario in order to secure the fire resistance performance of the precast fireproof duct slab. As a result of the test, it was found that the fireproof performance was secured when the thickness of the fireproof material was 30 mm or more. In both fireproof materials and concrete, the rate of temperature change initially increased, then decreased, and then increased again, and the temperature at the inflection point was measured as 110℃ for all fireproof materials and concrete. It is judged that this occurs when the C-S-H (CaO-SiO2-H2O) generated by the hydration reaction in both the fireproof material and concrete is dehydrated.

Heating Experiment of Fireproof Board using the Dry Process Bottom Ash and Oyster Shell (굴 패각과 건식공정 바텀애시를 사용한 내화보드의 가열실험)

  • Jung, Ui-In;Kim, Bong-Joo;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.193-199
    • /
    • 2016
  • This study is a research about performance of fireproof board using industrial waste such as oyster shell and dry process bottom ash through the heating test and conclusions were obtained as follows. Test samples show back side temperatures as follows : in $300^{\circ}C$, $103.1{\sim}125.1^{\circ}C$, in $600^{\circ}C$, $201.1{\sim}210.1^{\circ}C$, in $900^{\circ}C$, $249.2{\sim}276.9^{\circ}C$. In the test, temperature increases of specimens of fireproof board are kept at certain temperatures hence it could be concluded that the specimens withstand high temperatures. According to the test, it could be concluded that fireproof board made by smaller particles shows better performance up to $600^{\circ}C$ while at higher temperatures, fireproof board made by bigger particles shows better performance. It is estimated that fireproof board made by particles of bigger size has more pore structure and it delays heat conduction.

Fire Resistance Performance of High Strength Concrete Columns with Fireproof Gypsum Board (방화석고보드를 부착한 고강도 콘크리트 기둥의 내화성능)

  • Youm, Kwang-Soo;Jeon, Hyun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.229-235
    • /
    • 2010
  • In this study, fire resistance performance of high strength concrete specimen with fireproof gypsum board was investigated for possible use in upgrading fire-resistant performance of the existing building and repair of fire damaged structures. Fire test of eight identical high strength concrete columns were carried out for 180 minutes in accordance with ISO-834. The temperature distributions in longitudinal reinforcement and concrete temperature at various depths were recorded. The fireproof performance of gypsum board and explosive spalling of concrete were observed. The specimens with 15 mm thick twoply fireproof gypsum board spalled after gypsum board crumbled regardless of fastening methods. However, when the thickness of fireproof gypsum board was more than 30 mm, it was possible to prevent the explosive spalling and control the rebar temperature. Although the effect of cover thickness could not be compared because the explosive spalling occurred, there seemed to be no difference in insulation efficiency.

A Study on Fireproof Performance of Mortar using Oyster shell as Filler (굴 패각을 채움재로 사용한 모르타르의 내화성능에 관한 연구)

  • Jung, Ui-In;Hong, Sang-Hun;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.135-136
    • /
    • 2017
  • Oyster shell is produce by shucking process in oyster farming in southern coast of Korea. In average, about 6.7kg of oyster shell is produced as an industrial waste for 1kg of oyster flesh, and even only in last year, it is estimated that about 150,000 ton of oyster shell is produced. Oyster shell is light weighted and the strength characteristic of it is similar to send. So we produced mortar test piece using grounded oyster shell powder according to Filler and reviewed Fireproof Performance.

  • PDF

An Experimental Study on the Application of Fireproof Panel in Tunnel Duct Slab (터널 풍도슬라브에 사용된 내화패널의 적용성에 관한 실험연구)

  • Woo Jin Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2023
  • Purpose: In this study,fire-resistance test were executed to evaluate the effectiveness of the fireproof panel attached to the PSC slab in tunnel. Method: For the fire resistance test, the RWS curve was applied and the furnace of the KICT was used. Result: As a result of the experiment, the maximum temperature measured on the concrete surface of the PSC slab with the fireproof panel was 321.8℃, which was lower than the damage limit temperature of 380℃ for concrete. Also, at the t=25mm, the maximum temperature was 35.2℃, which was lower than the damage temperature of steel, 250℃. The use of precast fire resistance panel(t=30mm) improves fire resistance of PSC structures. Conclusion: As a result of the test, a reinforcement method for attached a fireproof panel in case of fire in a tunnel or an underground roadway is provided to protect a structure from fire. In the future, it is necessary to perform the static performance test of the slab to which the fireproof panel is attached, and to confirm the adhesion performance of the fireproof panel by performing the pull-off test and the fatigue test.

Fireproof Performance of Mortar using Gypsum in Simplified Heating Test (간이 내화시험에 의한 석고계 모르타르의 내화성능)

  • Kang, Suk-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.181-188
    • /
    • 2011
  • Spalling must be considered when designing high-strength concrete to cope with fire. This study investigates the temperature rise of steel bar in high-strength concrete coated with fireproof mortar using gypsum exposed to fire. It was found that fireproof mortar using gypsum is more effective in constraining the temperature rise of steel bar in the high strength concrete than fireproof mortar using cement, and that the thinner the cover depth of the fireproof mortar, the more significant the influence of the gypsum. In addition, while there was no difference between ${\alpha}$-hemihydrate mortar and ${\beta}$-hemihydrate mortar on the temperature rise of steel bar, the compressive strength of ${\alpha}$-hemihydrate mortar is higher than that of ${\beta}$-hemihydrate mortar.

Tests of Fire and Flame Retardant Performance for Membrane Materials (막재료의 난연 및 방염성능 실험에 대한 연구)

  • Kim, Gee-Cheol;Choi, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2016
  • The Membrane structure has a number of problems in the application of a fireproof code based on general buildings codes. Thus, the fireproof code of membrane structure is necessary to activate the construction of the membrane structure. Because it requires a systematic classification of fire retardant and flame proof performance of membrane material. Fire retardant and flame proof tests are conducted on membrane materials mostly used in current construction to propose the fire and flame retardant performance criteria of membrane materials. Fire and flame retardant tests results, PTFE membrane material with the glass fiber fabric have a limit-combustible performance. PVDF membrane material with the polyester fabric does not ensure the fire retardant performance, but this membrane material has the flame retardant performance of a thick fabric. Also, ETFE does not ensure the fire retardant performance, but this membrane material has the flame retardant of a thin fabric.

An Experimental Study on Structural Behaviour of Asymmetric H Beam Slim floor under Load Condition in Fire (내화 피복된 비대칭 H형강을 적용한 슬림플로어 보의 재하가열조건 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Hyung-Jun;Min, Byung-Youl;Lee, Jae-Sung;Park, Soo-Yong
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • When it comes to slim floor using asymmetric H-beam, it was designed that the steel member is embedded in concrete with relatively low thermal conductivity so as to minimize the deterioration of rigidity of steel member in fire. But given the bottom flange of asymmetric H-beam is directly exposed to the fire, the measure of applying the fireproof coating to improve the fire rate performance of slim floor beam was sought. The test was aimed at comparing the fireproof performance by adjusting the load ratio of 0.4 and 0.3, and The test was carried out to identify the 3-hour fire performance by reinforcing the beam as well as applying the fireproof coat, In the wake of comparing the specimen depending on variation of load ratio, lowering load ratio by 0.1 resulted in difference of 12 minutes and deflection was 39 mm. It was able to improve 12 minutes by reinforcing the beam and up to 102.4 mm in deflection.

Egg shells and oyster shells for use on fireproof boards Study of physical and chemical properties (내화보드에 사용하기 위한 계란 껍데기 및 굴 패각의 물리적 화학적 특성 연구)

  • Shin, Dong Uk;Shin, Jong-Hyun;Kim, Han-Nah;Hong, Sang Hun;Jung, Ui In;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.46-47
    • /
    • 2020
  • Oyster shells and egg shells consist of CaCO3, which is known to have excellent fire performance as the main component, and research is currently being conducted as a fireproof board material. Therefore, in this study, the physical and chemical properties of oyster shell powder and egg shell powder are studied to find out the applicability of fireproof board

  • PDF