• Title/Summary/Keyword: fireproof

Search Result 128, Processing Time 0.025 seconds

Development of Inorganic Fire Protection Materials for High Strength Concrete (구조체 보호를 위한 고내화성 마감재 적용에 관한 실험적 연구)

  • Jung, Suk-Jo;Song, Hun;Kwon, Choon-Woo;Kim, Young-Yup;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.885-888
    • /
    • 2006
  • Nowaday, High strength concrete(HSC) has been mainly used in high rise building. HSC have superior property as well as improvement in durability compared with ordinary strength concrete. In spite of durability of HSC, explosive spalling in concrete front surface near the source of fire occurs serious problem in structural safety. Thus, this study is concerned with experimentally investigation fire resistance of the inorganic fire protection materials at high temperatures up to $800^{\circ}C$. From the test result, developed inorganic binder becomes general that with rising temperature the compressive strength of the material increases in tendency. Therefore, the results indicate that it is possible to fireproof panels, fire protection of materials, etc.

  • PDF

The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel

  • Garcia, Harkaitz;Cuadrado, Jesus;Biezma, Maria V.;Calderon, Inigo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • This work studies the behaviour of a steel portal frame selection under fire exposure, considering both span lengths and fire exposure times as variables. Such structures combine carbon steel (S275), fireproof micro-alloyed steel (FR), and coatings of intumescent paint with variable thicknesses, improving thereby the flame retardant behaviour of the steel structure. Thus, the main contribution of this study is the optimization of the portal frames by combining both steels, analysing the resulting costs influence on the final dimensions. Besides, the topological optimization of each steel component within the structure is also defined, in accordance with the following variables: weather conditions, span, paint thickness, and cost of steel. The results mainly confirmed that using both FR and S275 grades with intumescent painting is the Pareto optimum when considering performance, feasibility and costs of such portal frames widely used for industrial facilities.

Implementation and Significance of Market Modernization Plan in Seoul, 1967-1973 (1967-1973년 서울의 시장 현대화계획의 시행과 의의)

  • Park, Ilhyang
    • Journal of architectural history
    • /
    • v.30 no.1
    • /
    • pp.19-32
    • /
    • 2021
  • The markets are the basic urban facilities for maintaining daily life. Although the urban structure changed rapidly and the population quickly concentrated in the city, the markets remained traditional and backward. To solve various problems in the small excess markets, the Seoul Metropolitan Government had pushed ahead with the market modernization plan since 1967. The purpose of this study is to analyze the process of establishing the market modernization plan and the progress of this project, and to identify the historical meaning of this plan. The results of this study as follows; The market modernization plan aimed to modernize market operation system as well as buildings, and the Government was able to achieve its first goal by enforcing the construction of high-rise buildings, as the markets were newly built with the relatively large scaled fireproof structures. Despite its various limitations, these markets were also regarded as the model of the modern market.

Measurement of the construction structure of hot-heated cement using nitrogen adsorption method (질소흡착법을 사용한 고온 가열 시멘트의 세공구조 측정)

  • Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.140-141
    • /
    • 2020
  • Concrete has a lower thermal conductivity or thermal diffusion coefficient compared to other building materials, so it is widely used as fireproof compartment material or refractory material for structures. However, in the event of thermal damage such as fire, cement curing agents and aggregates act differently, resulting in heat generation or deterioration of tissue due to dehydration, resulting in deterioration of physical properties and fire resistance. Therefore, in this study, the processing structure of cement paste is measured through nitrogen absorption method. The test specimen is a cement paste of 40% W/C and is set at 1000 ℃ under heating temperature conditions. As the temperature rose, the micro-pore mass below was reduced based on about 0.01 감소m, but the air gap above that was increased.Thus, in the range of pores measured in nitrogen adsorption, the air mass tended to decrease under high temperature conditions.

  • PDF

Statistical Analysis on the Structure of the Front Door in Apartment House (공동주택 세대 현관 방화문 구조에 관한 통계적 분석)

  • Shim, Han-Young;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.23-24
    • /
    • 2021
  • Since 2011, apartment houses account for about 41% of the fires in residential facilities for the past 10 years. Fire-resistant performance of fire doors is becoming more important to prevent the spread of fire in apartment houses. This research analyzed the structure of fire door through each 10 DB based on the quality inspection report of Continuous Acquisition & Life-cycle Support(CALS) from 2016 to 2020, which passed the fire performance test based on the laws and notices of domestic fire door. Therefore, based on the results of the analysis of DB in the future, we will conduct a study on structural improvement and addition for fireproof performance improvement of fire door.

  • PDF

Estimation of fire Experiment Prediction by Utility Tunnels Fire Experiment and Simulation (지하공동구 화재 실험 및 시뮬레이션에 의한 화재 설칠 예측 평가)

  • 윤명오;고재선;박형주;박성은
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • The utility tunnels are the important facility as a mainstay of country because of the latest communication developments. However, the utilities tunnel is difficult to deal with in case of a fire accident. When a cable burns, the black smoke containing poisonous gas will be reduced. This black smoke goes into the tunnel, and makes it difficult to extinguish the fire. Therefore, when there was a fire in the utility tunnel, the central nerves of the country had been paralyzed, such as property damage, communication interruption, in addition to inconvenience for people. This paper is based on the fire occurred in the past, and reenacting the fire by making the real utilities tunnel model. The aim of this paper is the scientific analysis of the character image of the fire, and the verification of each fire protection system whether it works well after process of setting up a fire protection system in the utilities tunnel at a constant temperature. The fire experiment was equipped with the linear heat detector, the fire door, the connection water spray system and the ventilation system in the utilities tunnel. Fixed portion of an electric power supply cable was coated with a fire retardant coating, and a heating tube was covered with a fireproof. The result showed that the highest temperature was $932^{\circ}c$ and the linear heat detector was working at the constant temperature, and it pointed at the place of the fire on the receiving board, and Fixed portion of the electric power supply cable coated with the fire retardant coating did not work as the fireproof. The heating tube was covered with the fireproof about 30 minutes.

  • PDF

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

An experimental study on the fireproof performance of fire damper according to change of the insulation conditions on the exposed side and unexposed side of the coaming (코밍 노출면 방열 두께 및 비 노출면 방열 길이 변화에 따른 방화 댐퍼의 내화성능에 관한 실험적 연구)

  • Choi, Tai-Jin;Kim, Joung-Sik;Lim, Young-Soo;Lee, Kyung-Hyun;Kang, Ho-Keun;Park, Sung-Ho;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-104
    • /
    • 2014
  • In this paper, Fire resistance test was carried out in accordance with the change of the insulation conditions on the exposed side and unexposed side of the coaming to obtain optimal insulation conditions for class H-120 insulation in connection with specimen-1 of the preceding paper for the evaluation of fireproof performance for fire dampers according to hydrocarbon fire conditions. As a test result, specimen-2(88 mm, $171^{\circ}C$) was satisfied class H-120 insulation, but specimen-3(76 mm, $181^{\circ}C$) was exceeded thermal insulation acceptance criteria at 110 minutes, therefor, specimen-2(88 mm) is optimal insulation conditions as possible lightweight than specimen-1. Test result comparison, we concluded that temperature rising of the coaming insulation surface was influenced by conductive heat from the bulkhead, and coaming surface was influenced by radiant heat from blade & coaming.

A Study on Improvement of Fire-resistant and Flame-retardant Properties of Silicone Rubber Composites Containing Perlite (펄라이트를 첨가한 실리콘 고무 복합체의 내화 및 난연 특성 향상에 관한 연구)

  • Lee, Byung-Gab;Lee, Jong-Hyeok;Bang, Dae-Suk;Won, Jong-Pil;Jang, Il-Young;Park, Woo-Young;Jhee, Kwang-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.164-170
    • /
    • 2011
  • In this study, silicone rubber filled with environmentally-friendly perlite was prepared by mechanical mixing in order to improve thermal properties, such as heat and fire resistances. We found that the properties of silicone rubber composites depended on perlite concentration by various characterization methods. Thermogravimetric analysis(TGA) indicated that the initial degradation temperature of silicone/perlite composite was higher than that of pristine silicone rubber. The gas torch test showed that the opposite side temperature of composite materials was remarkably low as compared to that of pristine silicone rubber. In addition, the composites containing 5 wt% and 10 wt% of perlite showed remarkable thermal stability at elevated temperatures according to the results of both fireproof furnace tests under the RABT condition and carbonization furnace tests. The images from a scanning electron microscope(SEM) showed the degree of dispersion of perlite in silicone rubber. Finally, it was confirmed that limited oxygen index(LOI) was increased with perlite concentration.