• Title/Summary/Keyword: fire.explosion

Search Result 643, Processing Time 0.023 seconds

Measurement and Prediction of Fire and Explosion Properties of 3-Hexanone (3-헥사논의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.33-38
    • /
    • 2013
  • For the safe handling of 3-hexanone(ethyl propyl ketone), this study was investigated the explosion limits of 3-hexanone in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of 3-hexanone by using closed-cup tester were experimented at $18^{\circ}C$. The lower flash points of 3-hexanone by using open cup tester were experimented in $27^{\circ}C{\sim}32^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for 3-hexanone. The experimental AIT of 3-hexanone was at $425^{\circ}C$. The lower explosion limit( LEL) by the measured lower flash point of 3-hexanone was calculated as 1.21 Vol%.

Valve monitoring system design and implementation using an infrared sensor and ZigBee (Zigbee와 적외선 센서를 활용한 밸브 개폐 모니터링 시스템 설계 및 구현)

  • Sim, Hyun;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2015
  • The valve device is installed in hazardous areas, such as a chemical plant explosion has been sealed with fire protection device to prevent the risk of explosion. In this paper, due to the explosion-proof devices using external power the device can not be used in infrared sensors and Zigbee sensor valve device by measuring the open degree of valve opening and closing of the danger zone to check whether. Valve opening and closing operation log screen time, we propose a low-power operation monitoring system administrators to manage and control the plant. Develop power control relay board apply an improved algorithm to apply the asynchronous LPL power management. The plant monitoring system and explosion-proof valve opening and closing the valve system with the intelligent device designed and implemented and tested it.

Safety Evaluation of Non-refillable Butane Can Equipped with Relief Valve for Prevention of Explosion (안전밸브가 장착된 휴대용 부탄캔에 대한 안전성 평가 연구)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.212-217
    • /
    • 2008
  • This study carried out the safety evaluation of non-refillable butane can for portable gas range equipped with relief valve for prevention of explosion. The can is heated by electric heater at the real using condition and the extreme condition after installing at a portable gas range for checking the operating pressure and the evaluating suitability of releasing flux. And the possibility of fire or explosion was tested when the gas was released from the relief valve at the real condition. As a result of this safety evaluation test, a non-refillable butane can with relief valve prevents the can from exploding by control of internal pressure.

The Optimal Design of Explosion Prevention for LPG Storage Tank (폭발방지를 고려한 LPG 저장탱크 최적설계)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Son, Seok-Woo;Lim, Jae-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.949-952
    • /
    • 2010
  • The utilization of LPG(Liquefied Petroleum Gas) is increasing as an environmental-friendly fuel in all countries making green growth new paradigm, and use of gas is spread fast as motor fuels to decrease air pollution. Loss of lives by explosion and fire is happening every year as gas use increases, and gas accident in large scale storage property is causing serious problems socially. To minimize this problem, underground containment type storage tank is being presented as an alternative recently. In this study, to minimize explosion occurrence in underground containment type storage tank, the suitable storage tank is designed to consider explosion prevention that makes exposure surface area minimize in confined contents volume and flame to construct storage tank by the most suitable condition in the underground containment room. As a result of the design of storage tank having the most suitable condition by this research, underground containment space was minimized on diameter 3m, length 4.83m in 20 tons storage tank and its safety was improved as exposure surface area in flame decreased by 89.4%, compared with the existent storage tank.

  • PDF

A Study of Risk Analysis for Underground-parking of Gas Vehicle (가스 자동차의 지하 주차 시 위험성 분석)

  • Rhie, Kwang-Won;Kim, Tae-Hun;Oh, Dong-Seok;Oh, Young-Dal;Seo, Doo-Hyoun;Shin, Soo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • We studied the risk analysis of fire and explosion caused by gas leak in underground-parking of gas vehicle. However, an entrance regulation of gas vehicles (H2/LPG/CNG etc.) to underground garages has not been enacted in Korea. Incase, a gas explodes in an underground parking garage placed in overcrowded residential area, such as an apartment, the scale of the damage would cause tremendous disaster. Faults of vehicle parts and management problems were evaluated by using the Failure mode and effect analysis (FMEA), which is a qualitative analysis method. The range of the damaged area by the explosion and the damage scale by the explosion pressure were analyzed by using the process hazard analysis software tool (PHAST). The study is expected to facilitate enactment of the regulation for the underground parking to restrict the gas vehicle.

A Study on Design Method of Blast Hardened Bulkhead Considering the Response of Shock Impulse (충격량에 대한 응답을 고려한 폭발강화격벽 설계 방법 연구)

  • Myojung Kwak;Joonyoung Yoon;Seungmin Kwon;Yoojeong Noh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.10-19
    • /
    • 2023
  • Blast Hardened Bulkhead (BHB) is an important measure that can increase the ship's survivability as well as protect the lives of the crew by mitigating the damage extent caused by an internal explosion in the ship. In particular, both the pressure and the shock impulse should be considered when designing the BHB against reflected shock waves having a high pressure with a short duration. This study proposes a design method for BHB that considers both the pressure and the shock impulse generated during the internal explosion. In addition, analysis and design concepts for accident loads such as explosion, fire, and collision of NORSOK and DNVGL, one of the international design guidelines for the curtain plate type blast hardened bulkhead type applied by the Korean Navy, are utilized. If this method is applied, it is expected that it can be used as a design concept for the pressure as well as the shock impulse of the explosion load of the curtain plate.

Multi-Objective Optimization Study of Blast Wall Installation for Mitigation of Damage to Hydrogen Handling Facility (수소 취급시설 피해 저감을 위한 방호벽 설치 다목적 최적화 연구)

  • Se Hyeon Oh;Seung Hyo An;Eun Hee Kim;Byung Chol Ma
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.9-15
    • /
    • 2023
  • Hydrogen is gaining attention as a sustainable and renewable energy source, potentially replacing fossil fuels. Its high diffusivity, wide flammable range, and low ignition energy make it prone to ignition even with minimal friction, potentially leading to fire and explosion risks. Workplaces manage ignition risks by classifying areas with explosive atmospheres. However, the effective installation of a blast wall can significantly limit the spread of hydrogen, thereby enhancing workplace safety. To optimize the wall installation of this barrier, we employed the response surface methodology (RSM), considering variables such as wall distance, height, and width. We performed 17 simulations using the Box-Behnken design, conducted using FLACS software. This process yielded two objective functions: explosion likelihood near the barrier and explosion overpressure affecting the blast wall. We successfully achieved the optimal solution using multi-objective optimization for these two functions. We validated the optimal solution through verification simulations to ensure reliability, maintaining a margin of error of 5%. We anticipated that this method would efficiently determine the most effective installation of a blast wall while enhancing workplace safety.

Identifying Hazard of Fire Accidents in Domestic Manufacturing Industry Using Data Analytics (국내 제조업 화재사고 데이터 분석을 통한 복합 유해·위험요인 확인)

  • Kyung Min Kim;Yongyoon Suh;Jong Bin Lee;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.23-31
    • /
    • 2023
  • Revising the Occupational Safety and Health Act led to enacting and revising related laws and systems, such as placing fire observers in hot workplaces. However, the operating standards in such cases are still ambiguous. Although fire accidents occur through multiple and multi-step factors, the hazards of fire accidents have been identified in this study as individual rather than interrelated factors. The aim has been to identify multiple factors of accidents, outlining fire and explosion accidents that recently occurred in the domestic manufacturing industry. First, major keywords were extracted through text mining. Then representative accident types were derived by combining the main keywords through the co-word network analysis to identify the hazards and their relationships. The representative fire accidents were identified as six types, and their major hazards were then addressed for improving safety measures using the identification of hazards in the "Risk Assessment" tool. It is found that various safety measures, such as professional fire observers' training and clear placement standards, are needed. This study will provide useful basic data for revising practical laws and guidelines for fire accident prevention, system supplementation, safety policy establishment, and future related research.

A study on damage prediction analysis for styrene monomer fire explosion accidents (스티렌 모노머 화재폭발사고 피해예측 분석에 관한 연구)

  • Hyung-Su Choi;Min-Je Choi;Guy-Sun Cho
    • Industry Promotion Research
    • /
    • v.9 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • This study selected the worst-case scenario for fireball and vapor cloud explosion (VCE) of a styrene monomer storage tank installed in a petrochemical production plant and performed damage prediction and accident impact analysis. The range of influence of radiant heat and overpressure due to fireball and vapor VCE during the abnormal polymerization reaction of styrene monomer, the main component of the mixed residue oil storage tank, was quantitatively analyzed by applying the e-CA accident damage prediction program. The damage impact areas of radiant heat and explosion overpressure are analyzed to have a maximum radius of 1,150m and 626m, respectively. People within 1,150m of radiant heat of 4kW/m2 may have their skin swell when exposed to it for 20 seconds. In buildings within 626m, where an explosion overpressure of 21kPa is applied, steel structures may be damaged and separated from the foundation, and people may suffer physical injuries. In the event of a fire, explosion or leak, determine the risk standards such as the degree of risk and acceptability to workers in the work place, nearby residents, or surrounding facilities due to radiant heat or overpressure, identify the hazards and risks of the materials handled, and establish an emergency response system. It is expected that it will be helpful in establishing measures to minimize damage to workplaces through improvement and investment activities.

A Study on Estimation of Human Damage for Overpressure by Vapor Cloud Explosion in Enclosure Using Probit Model (프로빗모델을 통한 밀폐공간에서의 증기운폭발 과압에 의한 인체피해예측)

  • Leem, Sa-Hwan;Lee, Jong-Rark;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • The demand of gas as an eco-friendly energy source has being increased. With the demand of gas, the use of gas is also increased, so injury and loss of life by the explosion and fire have been increasing every year. Hence the influence on over-pressure caused by Vapor Cloud Explosion in enclosure of experimental booth was calculated by using the Hopkinson's scaling law and damage effect by the accident to a human body was estimated by applying the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to human over 3 meters away and that of overpressure to tympanum rupture over 25 meters away from the explosion shows nothing.

  • PDF