DOI QR코드

DOI QR Code

Multi-Objective Optimization Study of Blast Wall Installation for Mitigation of Damage to Hydrogen Handling Facility

수소 취급시설 피해 저감을 위한 방호벽 설치 다목적 최적화 연구

  • Se Hyeon Oh (Department of Chemical Engineering, Chonnam National University) ;
  • Seung Hyo An (Department of Chemical Engineering, Chonnam National University) ;
  • Eun Hee Kim (Department of Chemical Engineering, Chonnam National University) ;
  • Byung Chol Ma (Department of Chemical Engineering, Chonnam National University)
  • 오세현 (전남대학교 화학공학부) ;
  • 안승효 (전남대학교 화학공학부) ;
  • 김은희 (전남대학교 화학공학부) ;
  • 마병철 (전남대학교 화학공학부)
  • Received : 2023.09.27
  • Accepted : 2023.12.01
  • Published : 2023.12.31

Abstract

Hydrogen is gaining attention as a sustainable and renewable energy source, potentially replacing fossil fuels. Its high diffusivity, wide flammable range, and low ignition energy make it prone to ignition even with minimal friction, potentially leading to fire and explosion risks. Workplaces manage ignition risks by classifying areas with explosive atmospheres. However, the effective installation of a blast wall can significantly limit the spread of hydrogen, thereby enhancing workplace safety. To optimize the wall installation of this barrier, we employed the response surface methodology (RSM), considering variables such as wall distance, height, and width. We performed 17 simulations using the Box-Behnken design, conducted using FLACS software. This process yielded two objective functions: explosion likelihood near the barrier and explosion overpressure affecting the blast wall. We successfully achieved the optimal solution using multi-objective optimization for these two functions. We validated the optimal solution through verification simulations to ensure reliability, maintaining a margin of error of 5%. We anticipated that this method would efficiently determine the most effective installation of a blast wall while enhancing workplace safety.

Keywords

Acknowledgement

This research was supported by the Graduate School of Chemical Characterization hosted by the Korean Ministry of Environment

References

  1. T. da Silva Veras,T. S. Mozer, D. da Costa Rubim Messeder dos Santos, A. da Silva Cesar, "Hydrogen: Trends, Production and Characterization of the Main Process Worldwide", Int. J. Hydrogen Energy, Vol. 42, No. 4, pp. 2018-2033, 2017. https://doi.org/10.1016/j.ijhydene.2016.08.219
  2. A. Downer, E. M. Kim, N. Kohler-Suzuki, P. Lamy, F. Mogherini, R. P. Pardo, M. Reiterer, Scott A. Snyder, J. S. Song and Y. K. Yoon, "Challenges and Opportunities of Korea's Foreign Policy as a Developed Country", Korea Institute for International Economic Policy, PA 22-01, 2022.
  3. M. I. Aydin and I. Dincer, "An Assessment Study on Various Clean Hydrogen Production Methods", Energy, 123090, 2022.
  4. Y. J. Li, X. L. Hou, C. Wang, Q. B. Wang, W. Qi, J. W. Li and X. L. Zhang, "Modeling and Analysis of Hydrogen Diffusion in an Enclosed fuel Cell Vehicle with Obstacles", Int. J. Hydrogen Energy, Vol. 47, No. 9, pp. 5745-5756, 2022. https://doi.org/10.1016/j.ijhydene.2021.11.205
  5. X. Mao, R. Ying, Y. Yuan and F. Li, B. Shen, "Simulation and Analysis of Hydrogen Leakage and Explosion Behaviors in Various Compartments on a Hydrogen Fuel Cell Ship", Int. J. Hydrogen Energy, Vol. 46, No. 3, pp. 6857-6872, 2021. https://doi.org/10.1016/j.ijhydene.2020.11.158
  6. W. R. Park and O. H. Kwon, "Numerical Analysis of Palladium added Carbon Fiber/Al using Extended Finite Element Method and Multiscale Technique", J. Korean Soc. Saf., Vol. 34, No. 2, pp. 7-14, 2023.
  7. J. H. Baek, H. J. Lee and C. B. Jang, "A Methodology for Determination of the Safety Distance in Chemical Plants using CFD Modeling", J. Korean Soc. Saf., Vol. 34, No. 2, pp. 7-14, 2023.
  8. Z. Zhao, M. Liu, G. Xiao, T. Cui, Q. Ba and X. Li, "Numerical Study on Protective Measures for a Skid Mounted Hydrogen Refueling Station", Energies, Vol. 16, Issue 2, 16020910, 2023.
  9. W. I. Park, D. H. Kim and S. K. Kang, "Safety Analysis Of Potential Hazards at Hydrogen Refueling Station", Journal of The Korean Institute of Gas, Vol. 25, No. 4, pp. 43-48, 2021.
  10. T. Tanaka, T. Azuma, J. A. Evans, P. M. Cronin, D. M. Johnson and R. P. Cleaver, "Experimental Study on Hydrogen Explosions in a Full-scale Hydrogen Filling Station Model", Int. J. Hydrogen Energy, Vol. 32, No. 13, pp. 2162-2170, 2007. https://doi.org/10.1016/j.ijhydene.2007.04.019
  11. Y. L. Liu, J. Y. Zheng, P. Xu, Y. Z. Zhao, H. Y. Bie, H. G. Chen and H. Dryver, "Numerical Simulation on the Diffusion of Hydrogen due to High Pressured Storage Tanks Failure", J. Loss Prev. Process Ind., Vol. 22, No. 3, pp. 265-270, 2009. https://doi.org/10.1016/j.jlp.2008.06.007
  12. H. A. Olvera and A. R. Choudhuri, "Numerical Simulation of Hydrogen Dispersion in the Vicinity of a Cubical Building in Stable Stratified Atmospheres", Int. J. Hydrogen Energy, Vol. 31, No. 15, pp. 2356-2369, 2006. https://doi.org/10.1016/j.ijhydene.2006.02.022
  13. J. B. Kwak, H. T. Lee, S. M. Park, J. H. Park and S. H. Jung, "Risk Assessment of a Hydrogen Refueling Station in an Urban Area", Energy, Vol 16, No. 9, 16093963, 2023.
  14. Y. H. Zhou, Y. C. Li and W. Gao, "Experimental Investigation on the Effect of a Barrier Wall on Unconfined Hydrogen Explosion", Int. J. Hydrogen Energy, Vol. 48, Issue 86, pp. 33763-33773, 2023. https://doi.org/10.1016/j.ijhydene.2023.05.138
  15. P. Middha, O. R. Hansen and I. E. Storvik, "Validation of CFD-model for Hydrogen Dispersion", J. Loss Prev. Process Ind., Vol. 22, No. 6, pp. 1034-1038, 2009. https://doi.org/10.1016/j.jlp.2009.07.020
  16. O. R. Hansen, F. Gavellib, S. G. Davis and P. Middha "Equivalent Cloud Methods used for Explosion Risk and Consequence Studies", J. Loss Prev. Process Ind., Vol. 26, No. 3, pp. 511-527, 2013. https://doi.org/10.1016/j.jlp.2012.07.006
  17. FLACS v10.9 User's Manual, GexCon, 2019.
  18. B. H. Bang, C. S. Ahn, J. G. Lee, Y. T. Kim, M. H. Lee, B. Horn, D. Malik, K. Tomas, S. C. James, A. L. Yarin and S. S. Yoon, "Theoretical, Numerical, and Experimental Investigation of Pressure Rise due to Deflagration in Confined Spaces", Int. J. Therm Sci., Vol. 120, pp. 469-480, 2017. https://doi.org/10.1016/j.ijthermalsci.2017.05.019
  19. Q. Hu and X. Zhang, "A Review of Hydrogen-air Cloud Explosions: The Fundamentals, Overpressure Prediction Methods, and Influencing Factors", Int. J. Hydrogen Energy, Vol. 48, No. 36, pp. 13705-13730, 2023. https://doi.org/10.1016/j.ijhydene.2022.11.302
  20. G. R. Astbury and S. J. Hawksworth, "Spontaneous Ignition of Hydrogen Leaks: A Review of Postulated Mechanisms", Int J Hydrogen Energy, Vol. 32, No. 13, pp. 2178-2185, 2007. https://doi.org/10.1016/j.ijhydene.2007.04.005
  21. M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar and L. A. Escaleira, "Response Surface Methodology (RSM) as a Tool for Optimization Inanalytical Chemistry", Talanta, Vol. 76, Issue 5, pp. 965-977, 2008. https://doi.org/10.1016/j.talanta.2008.05.019
  22. S. H. Oh, X. Xiao and Y. S. Kim, "Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method", Transactions of Materials Processing, Vol. 30, No. 1, pp. 27-34, 2021. https://doi.org/10.5228/KSTP.2021.30.1.27