• Title/Summary/Keyword: fire/explosion prevention

Search Result 92, Processing Time 0.027 seconds

Autoignition of Urethane Foam to be Used as the Insulator of the Household Refrigerator

  • Choi, Jae Wook;Mok, Yun Soo
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.47-51
    • /
    • 2002
  • This study was performed by measuring the minimum ignition temperature of polyurethane form recovered from the recycling process of the end-of-life home appliances. The critical ignition temperature of polyurethane form was lower as the size of the sample vessel was increased, and that of polyurethane form using cyclopentane as the forming agent was relatively lower than the polyurethane form using CFC and the combustion of cyclopentane-polyurethane form occurred fiercely. It is considered that the recycling process of end-of-life home appliances using cyclopentane-polyurethane form as the insulator would require a special fire and dust explosion prevention measures since there exists a high potential hazard of fire and dust explosion during crushing and storage processes.

Safety Evaluation of Non-refillable Butane Can Equipped with Relief Valve for Prevention of Explosion (안전밸브가 장착된 휴대용 부탄캔에 대한 안전성 평가 연구)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.212-217
    • /
    • 2008
  • This study carried out the safety evaluation of non-refillable butane can for portable gas range equipped with relief valve for prevention of explosion. The can is heated by electric heater at the real using condition and the extreme condition after installing at a portable gas range for checking the operating pressure and the evaluating suitability of releasing flux. And the possibility of fire or explosion was tested when the gas was released from the relief valve at the real condition. As a result of this safety evaluation test, a non-refillable butane can with relief valve prevents the can from exploding by control of internal pressure.

Study of the Risk of Ignition due to Internal Combustion Engines in Areas with Potentially Explosive Gas Atmospheres (잠재적 폭발위험장소에서 내연기관에 의한 점화 위험성에 관한 연구)

  • Kim, Yun Seok;Rie, Dong Ho
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • Safety management in hazardous areas with potentially explosive gas atmospheres (here in after referred to as hazardous areas) in large scale facilities dealing with combustible or flammable materials at home and abroad is very important (significant) for the coexistence of the company and local society based on business continuity management (BCM) and reliance. For the safety management in hazardous areas, two systems are mainly used: (1) the control system for the prevention of combustible or flammable substances and (2) the explosion proof system for the elimination of ignition sources when flammable gases are leaked to inhibit the transition to fire or explosion accidents. While technology and regulations on explosion proof facilities or devices for electrical ignition sources are well developed and defined, those for thermal ignition sources need to be more developed and established. In this study, the internal combustion engine in hazardous areas was investigated to determine the risk of ignition. For this purpose, document searches were conducted on the relevant international standards and accidents cases and risk analysis reports. In addition, this study assessed the application cases of the diesel engine's safety equipment, such as spark arresters regarding the site of process safety management (PSM) system in central Korea. To practically apply these results to the hydrocarbon industry, the safety management method for explosion prevention in hazardous areas was provided by risk identification for ignition sources of internal combustion engines, such as diesel engines.

Analysis of the Actual Conditions of the Asphalt Regulations by Fire Service Organizations and Explosion Cases (아스팔트에 대한 소방기관의 규제 실태와 폭발사례의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.97-105
    • /
    • 2017
  • Because asphalt is a solid at normal temperature and is not a hazardous material as stipulated in the Safety Management Act on Hazardous Materials, it is often recognized as having no risk of fire or explosion. On the other hand, it is as dangerous as flammable liquid because it is heated to $170-180^{\circ}C$ and stored in a storage tank. This study analyzed the risk of fire and explosion during the storage and handling of asphalt and the actual conditions of asphalt regulations by fire service organizations. Moreover, this study analyzed the domestic case of explosions in the production process of asphalt concrete (ASCON) and domestic and foreign cases of asphalt storage tank explosions. The analysis suggested that unlike Japan, Korea has no asphalt regulations in fire service organizations. Explosions can occur when ignition is delayed after fuel is sprayed on the dryer drum burner of the aggregates during the production of ASCON. A physical explosion can occur in the storage tank when environmental purification facilities suddenly work strongly to remove air pollutants or bad smells during the heating of asphalt in an asphalt storage tank. In addition, explosions can occur when fires such as welding is performed in the asphalt storage tank.

A Study on the Explosion Characteristics of by Product Gas of Carbon Black Manufacturing Process (카본블랙 제조 부생가스의 폭발 특성연구)

  • Oh Kyu-Hyung;Lee Sung-Eun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.60-64
    • /
    • 2006
  • Explosion range and explosion characteristics of by product gas from carbon black manufacturing process were studied. About 75% of the by product gas were composed with water vapour and nitrogen. And the combustible component in the gas were hydrogen, methane, acetylene and carbon mono-oxide. Because of the combustible components in the by product gas there are explosion hazards in the gas handling process. Explosion range of the gas by experiment was from 17.1% to 70.7% and the value has considerable difference with the calculated value from Lechatelier law. Explosion pressure of the gas was $5.4kg/cm^2$ and the average explosion pressure rise rate was $39.2kg/cm^2/s$. Based on the experimental result we can expect that a explosion or fire accident during the handling the gas can make a severe loss, therefore there should be a explosion prevention or protection measures in the gas handling process.

  • PDF

Detection and Analysis of Discharge Pulses by Failure Mechanisms of the Separator inside Lithium-Ion Batteries (리튬이온 배터리의 분리막 손상 요인별 방전펄스의 검출과 분석)

  • Lim, Seung-Hyun;Lee, Gyeong-Yeol;Kim, Nam-Hoon;Kim, Dong-Eon;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.327-332
    • /
    • 2021
  • Lithium-ion batteries (LIBs) have become a main energy storage device in various applications, such as portable appliances, renewable energy facilities, and electric vehicles. However, the poor thermal stability of LIBs may cause explosion or fire. The thermal runaway is the result of a failure of the separator inside LIB. Damages like tearing, piercing, and collapsing of the separator were simulated in a mechanical, an electrical, and a thermal way, and small discharge pulses of a few mV were detected at the time of separator damages. From the experimental results, this paper provided a method that can identify the separator failure before thermal runaway in the aspect of a potential explosion and fire prevention measures.

A Study of the Ignition Mechanism in Electric Condenser Iksan Firestation (콘덴서의 발화 메커니즘 실험)

  • Kim, Sang-Soon;Lee, Jae-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.103-113
    • /
    • 2021
  • As the use of capacitors in electrical appliances and electrical control circuits increases, the related electrical fire is increasing. There are various parts such as resistors, coils, and capacitors that make up an electric circuit. Among them, the ignition of a capacitor with a temporary charging function is closely related to the structural characteristics of the capacitor. Capacitors can explode due to various reasons, and the high heat generated when they explode ignites the inflammable dielectric, which in turn burns the inflammable materials such as the surrounding electric wires and spreads into a fire. In this paper, the ignition mechanism is studied by conducting a reenactment experiment on the various probabilities that can be ignited in an electric capacitor, and the prevention measures to be applied to the fire prevention are presented.

A Study on the Development of Explosion Proof ESD Detector and Intrinsic Safety Characteristics Analysis (방폭구조 ESD Detector 개발 및 본질안전 특성 분석에 관한 연구)

  • Byeon, Junghwan;Choi, Sang-won
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Article 325 (Prevention of Fire Explosion due to Electrostatic) of the Rule for Occupational Safety and Health Standard specifies that in order to prevent the risk of disasters caused by static electricity, fire, explosion and static electricity in the production process, However, in order to do this, it is absolutely necessary to use a pre-detection technology and a detector for antistatic discharge prediction, which is a precautionary measure by static electricity in a fire / explosion hazard place, but in Korea, And there is no technical standard for the application of the technology of the explosion proof structure of the related equipment. Research methods include domestic and overseas electrostatic discharge detection technology and literature investigation of related equipment explosion proofing technology, domestic and foreign electrostatic discharge detection device production and use situation investigation, advanced foreign technology data analysis and benchmarking. In particular, we sought to verify the results of empirical experiments using electrostatic discharge detection technology through sample purchase and analysis of related major products, development of optimization technology through prototype production, evaluation, and supplementation, and expert knowledge through expert consultation. The results of this study were developed and fabricated two prototypes of electrostatic discharge detector based on the technology / standard related to electrostatic discharge detection technology in Korea and abroad through development of electrostatic discharge detection technology and development and production of detector. In addition, based on the development of electrostatic discharge detection technology, we developed an intrinsic safety explosion proof ib class explosion proof technology applicable to the process of using and handling flammable gas and flammable liquid vapor and combustible dust. In the case of the over voltage and minimum voltage are supplied to the explosion-proof structure ESD detector, check the state of the circuit and the transient and transient currents generated by the coil and capacitor elements during the input and standby of the signal pulse voltage. Explosion-proof equipment-Part 11: Intrinsically safe explosion proof structure The comparative evaluation with the reference curve in Annex A of "i" confirms that the characteristics of the intrinsically safe explosion protection structure are met.

The Optimal Design of Explosion Prevention for LPG Storage Tank (폭발방지를 고려한 LPG 저장탱크 최적설계)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Son, Seok-Woo;Lim, Jae-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.949-952
    • /
    • 2010
  • The utilization of LPG(Liquefied Petroleum Gas) is increasing as an environmental-friendly fuel in all countries making green growth new paradigm, and use of gas is spread fast as motor fuels to decrease air pollution. Loss of lives by explosion and fire is happening every year as gas use increases, and gas accident in large scale storage property is causing serious problems socially. To minimize this problem, underground containment type storage tank is being presented as an alternative recently. In this study, to minimize explosion occurrence in underground containment type storage tank, the suitable storage tank is designed to consider explosion prevention that makes exposure surface area minimize in confined contents volume and flame to construct storage tank by the most suitable condition in the underground containment room. As a result of the design of storage tank having the most suitable condition by this research, underground containment space was minimized on diameter 3m, length 4.83m in 20 tons storage tank and its safety was improved as exposure surface area in flame decreased by 89.4%, compared with the existent storage tank.

  • PDF

A study on Preventive Measures for Fire and Explosion Accidents During Acetic Acid Handling in Manufacturing the Semiconductor Material (반도체 소재 제조 공정에서 아세트산 취급 작업 시 발생한 화재·폭발 사고 예방대책에 관한 연구)

  • Dae Joon Lee;Sang Ryung Kim;Sang Gil Kim;Kyo Shik Park;Joon Won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Flammable materials used in semiconductor supply facilities are manufactured at high temperatures and high pressures, and as the semiconductor industry becomes more sophisticated and larger, the amount of materials used is rapidly increasing. Recently, fires and explosions occurred during the handling of acetic acid, which is a raw material for making products in the semiconductor material manufacturing process. Overall problems such as lack of air inflow prevention for fire and explosion prevention were identified. Therefore, in this study, in order to accurately identify the cause of the accident and prevent fire and explosion that may occur in the process of handling large amounts of flammable liquids, opinions from various perspectives, such as construction of facilities such as hoppers, installation of AOPS components, and change in workers' perceptions would like to present.