• 제목/요약/키워드: finite-element method

검색결과 13,379건 처리시간 0.04초

Nodeless Variables Finite Element Method and Adaptive Meshing Teghnique for Viscous Flow Analysis

  • Paweenawat Archawa;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1730-1740
    • /
    • 2006
  • A nodeless variables finite element method for analysis of two-dimensional, steady-state viscous incompressible flow is presented. The finite element equations are derived from the governing Navier-Stokes differential equations and a corresponding computer program is developed. The proposed method is evaluated by solving the examples of the lubricant flow in journal bearing and the flow in the lid-driven cavity. An adaptive meshing technique is incorporated to improve the solution accuracy and, at the same time, to reduce the analysis computational time. The efficiency of the combined adaptive meshing technique and the nodeless variables finite element method is illustrated by using the example of the flow past two fences in a channel.

후방 충격압출 성형 공정의 FVM과 FEM의 적용성에 관한 연구 (A Study on the comparison of FEM and FEM for Backward Impact Extrusion Process)

  • 정상원;조규종;김성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1565-1568
    • /
    • 2003
  • The backward extrusion process is one of the commonly used metal forming processes. In this paper. a battery case which has the rectangular section, is analyzed using a 3D metal forming package(MSC.Superforge). This pacakge uses the finite volume analysis method. It is shown that the MSC.Superforge package using finite volume method provides result very close to those obtained from a finite element analysis package(MSC.Superform). However, the simulation time using the finite volume method was almost 10 % of the simulation time consumed by the other package using finite element method. Moreover, the finite volume method used in MSC.Superforge can eliminate the remeshing problems that make the simulating a metal forming process with severe deformation, such as the extrusion process, so difficult.

  • PDF

스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석 (Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method)

  • 이영구;홍석윤;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

An effective finite element approach for soil-structure analysis in the time-domain

  • Lehmann, L.
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.437-450
    • /
    • 2005
  • In this study, a complete analysis of soil-structure interaction problems is presented which includes a modelling of the near surrounding of the building (near-field) and a special description of the wave propagation process in larger distances (far-field). In order to reduce the computational effort which can be very high for time domain analysis of wave propagation problems, a special approach based on similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to introduce non-linear material behaviour. In this paper, a new approach to calculate the involved convolution integrals is presented. This approximation in time leads to a dramatically reduced computational effort for long simulation times, while the accuracy of the method is not affected. Finally, some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary Element approach. The results are in excellent agreement with those of the coupled Finite Element/Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is easy to incorporate in any Finite Element code, so the practical relevance is high.

유한요소법에 의한 사면붕괴 거동해석에 미치는 영향분석 (Analysis for Effects of Slope Failure Behavior by Finite Element Method)

  • 김영민
    • 한국지반공학회논문집
    • /
    • 제15권5호
    • /
    • pp.19-28
    • /
    • 1999
  • 본 논문에서는 사면붕괴해석에 대한 유한요소법의 적용에 대하여 검토하였다. 사면안정문제에 대해 가장 일반적으로 사용되는 방법은 한계평형이론에 의한 절편법이다. 또한 유한요소법은 지반의 응력, 변형률을 분석하는 방법으로 널리 인식되어 있다. 본 논문에서는 유한요소법으로 사면안정해석시, 요구되는 최소안전율 계산방법을 효율적으로 고려하는 방법에 대하여 검토하였다. 그리고 유한요소법으로 사면의 붕괴해석을 하는 경우에, 적용되는 해석방법 및 그 결과에 미치는 요인에 대하여 검토하였다. 또한, 여러 사면의 경우에 대하여 기존의 한계평형법에 의한 절편법과 유한요소 해석결과를 비교, 검토하였다.

  • PDF

배관 피로균열 성장 해석을 위한 유한요소 교호법의 적용 (Analysis of the Fatigue Crack Growth in Pipe Using Finite Element Alternating Method)

  • 김태순;박상윤;박재학;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.124-129
    • /
    • 2004
  • Finite element alternating method have been suggested and used for assessing the integrity of cracked structures. In the paper, in order to analyze arbitrarily shaped three dimensional cracks, the finite element alternating method is extended. The cracks are modeled as a distribution of displacement discontinuities by the displacement discontinuity method and the symmetric Galerkin boundary element method. Applied the proposed method to three dimensional crack included in the elbow, the efficiency and applicability of the method were demonstrated.

  • PDF

유한요소모델을 이용한 비선형 시스템의 매개변수 규명 (Nonlinear System Parameter Identification Using Finite Element Model)

  • 김원진;이부윤
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1593-1600
    • /
    • 2000
  • A method based on frequency domain approaches is presented for the nonlinear parameters identification of structure having nonlinear joints. The finite element model of linear substructure is us ed to calculating its frequency response functions needed in parameter identification process. This method is easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of finite element model. Since this method is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude but also selecting excitation frequencies. The validity of this method is tested numerically and experimentally with a cantilever beam having the nonlinear element. It was verified through examples that the method is useful to identify the nonlinear parameters of a structure having arbitary nonlinear boundaries.

종방향 진동해석에 비구조적 유한요소 적용 (Application of the Unstructured Finite Element to Longitudinal Vibration Analysis)

  • 김치경
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 2006
  • 본 연구는 파 해석에 있어서 공간-시간 분할 개념을 도입하여 켈러킨 방법으로 해석하였다. 공간-시간 유한요소법은 오직 공간에 대해서만 분할하는 일반적인 유한요소법보다 간편하다. 비교적 큰 시간간격에 대해서 공간과 시간을 동시에 분할하는 방법을 제시하며 가중잔차법이 공간-시간 영역에서 유한요소 정식화에 이용되었다. 큰 시간 간격으로 인하여 문제의 해가 발산하는 경우가 동적인 문제에서 흔히 발생한다. 이러한 결점을 보완한 사각형 공간-시간 요소를 취하여 문제를 해석하고 해의 안정에 대해 기술하였다. 다수의 수치해석을 통하여 이 방법이 효과적 임을 알 수 있었다.

Finite element modeling of multiplyconnected three-dimensional areas

  • Polatov, Askhad M.;Ikramov, Akhmat M.;Razmukhamedov, Daniyarbek D.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.277-289
    • /
    • 2020
  • This article describes the technology for constructing of a multiply-connected three-dimensional area's finite element representation. Representation of finite-element configuration of an area is described by a discrete set that consist of the number of nodes and elements of the finite-element grid, that are orderly set of nodes' coordinates and numbers of finite elements. Corresponding theorems are given, to prove the correctness of the solution method. The adequacy of multiply-connected area topology's finite element model is shown. The merging of subareas is based on the criterion of boundary nodes' coincidence by establishing a simple hierarchy of volumes, surfaces, lines and points. Renumbering nodes is carried out by the frontal method, where nodes located on the outer edges of the structure are used as the initial front.

동결과정을 포함한 다공층에서 자연대류에 대한 유한요소 해석 (Finite element solutions of natural convection in porous media under the freezing process)

  • 이문희;최종욱;서석진;박찬국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.51-56
    • /
    • 2000
  • The Finite Element Solutions Is reported on solid-liquid phase change in porous media with natural convection including freezing. The model is based on volume averaged transport equations, while phase change is assumed to occur over a small temperature range. The FEM (Finite Element Method) algorithm used in this study is 3-step time-splitting method which requires much less execution time and computer storage the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the energy equation. For natural convection including melting and solidification the numerical results show reasonable agreement with FDM (Finite Difference Method) results.

  • PDF