• Title/Summary/Keyword: finite volume

Search Result 1,929, Processing Time 0.023 seconds

FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD (Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

  • LI, QIAN;LIU, ZHONGYAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2002
  • In this paper, finite volume element methods for nonlinear parabolic problems are proposed and analyzed. Optimal order error estimates in $W^{1,p}$ and $L_p$ are derived for $2{\leq}p{\leq}{\infty}$. In addition, superconvergence for the error between the approximation solution and the generalized elliptic projection of the exact solution (or and the finite element solution) is also obtained.

  • PDF

Radiative Heat Transfer in Discretely Heated Irregular Geometry with an Absorbing, Emitting, and An-isotropically Scattering Medium Using Combined Monte-Carlo and Finite Volume Method (몬테카를로/유한체적결합법에 의한 국소 가열되는 복잡한 형상에서의 흡수, 방사, 비등방산란 매질에 대한 복사열전달 해석)

  • Byun, Do-Young;Lee, Chang-Jin;Chang, Seon-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.580-586
    • /
    • 2004
  • The ray effects of finite volume method (FVM) or discrete ordinate method (DOM) are known to show a non-physical oscillation in solution of radiative heat transfer on a boundary. This wiggling behavior is caused by the finite discretization of the continuous control angle. This article proposes a combined procedure of the Monte-Carlo and finite-volume method (CMCFVM) for solving radiative heat transfer in absorbing, emitting, and an-isotropically scattering medium with an isolated boundary heat source. To tackle the problem, which is especially pronounced in a medium with an isolated heat source, the CMCFVM is suggested here and successfully applied to a two-dimensional circular geometry.

Fundamental Study on The Heat Input Model of Hybrid Welding for The Finite Element Analysis (유한요소해석을 위한 하이브리드용접 입열모델 선정에 관한 기초적 연구)

  • 방한서;김영표
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.36-38
    • /
    • 2003
  • In order to understand the basic knowledge on the model of heat source in hybrid welding, authors have conducted finite element analysis to calculate heat distribution using three heat source models of non-split type and split type(Volume, Volume-Volume, Volume-Surface). From the research result, we can confirm that Volume-Volume heat source of split type is suitable for the analysis of heat distribution.

  • PDF

Prediction of Radiative Heat Transfer in a Three-Dimensional Gas Turbine Combustor with the Finite-Volume Method (유한체적법에 의한 복잡한 형상을 갖는 3차원 가스터빈 연속기내의 복사열 전달 해석)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2681-2692
    • /
    • 1996
  • The finite-volume method for radiation in a three-dimensional non-orthogonal gas turbine combustion chamber with absorbing, emitting and anisotropically scattering medium is presented. The governing radiative transfer equation and its discretization equation using the step scheme are examined, while geometric relations which transform the Cartesian coordinate to a general body-fitted coordinate are provided to close the finite-volume formulation. The scattering phase function is modeled by a Legendre polynomial series. After a benchmark solution for three-dimensional rectangular combustor is obtained to validate the present formulation, a problem in three-dimensional non-orthogonal gas turbine combustor is investigated by changing such parameters as scattering albedo, scattering phase function and optical thickness. Heat flux in case of isotropic scattering is the same as that of non-scattering with specified heat generation in the medium. Forward scattering is found to produce higher radiative heat flux at hot and cold wall than backward scattering and optical thickness is also shown to play an important role in the problem. Results show that finite-volume method for radiation works well in orthogonal and non-orthogonal systems.

Development of 2D Depth-Integrated Hydrodynamic and Transport Model Using a Compact Finite Volume Method (Compact Finite Volume Method를 이용한 수심적분형 흐름 및 이송-확산 모형 개발)

  • Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.473-480
    • /
    • 2012
  • A two-dimensional depth-integrated hydrodynamic and a depth-averaged passive scalar transport models were developed by using a Compact Finite Volume Method (CFVM) which can assure a higher order accuracy. A typical wave current interaction experimental data set was compared with the computed results by the proposed CFVM model, and resonable agreements were observed from the comparisons. One and two dimensional scalar advection tests were conducted, and very close agreements were observed with very little numerical diffusion. Finally, a turbulent mixing simulation was done in an open channel flow, and a reasonable similarity with LES data was observed.

Analysis of Radiative Heat Transfer about a Circular Cylinder in a Crossflow by P-l Approximation and Finite Volume Method in Non-Orthogonal Coordinate System (비직교좌표계에 대한 P-1 근사법 및 유한체적법을 이용한 주유동 중의 원형실린더 주위의 복사열전달 해석)

  • 이공훈;이준식;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.806-819
    • /
    • 1995
  • A study of radiative heat heat transfer has been done in the non-orthogonal coordinate system utilizing the finite volume method and the P.1 approximation. Radiation of absorbing, emitting and scattering media in a concentric annulus has been solved using the non-orthogonal coordinate and the calculations were compared with the existing results. The results obtained from the analysis using the finite volume method are in good agreement with the existing calculations for all optical thicknesses. It was also shown that for only optically thick cases, P-1 approximation can be used in a non-orthogonal coordinate. Convective heat transfer analysis has been carried out to obtain the temperature fields in a cross flow around a circular cylinder and the finite volume method was applied in the non-orthogonal coordinate system to analyze radiative heat transfer. Effects of the optical thickness, the ratio of the surface temperature of the cylinder tot he free stream temperature, and the scattering albedo on radiation have been presented.

Hydraulic fracture simulation of concrete using the SBFEM-FVM model

  • Zhang, Peng;Du, Chengbin;Zhao, Wenhu;Zhang, Deheng
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.553-562
    • /
    • 2021
  • In this paper, a hybrid scaled boundary finite element and finite volume method (SBFEM-FVM) is proposed for simulating hydraulic-fracture propagation in brittle concrete materials. As a semi-analytical method, the scaled boundary finite element method is introduced for modelling concrete crack propagation under both an external force and water pressure. The finite volume method is employed to model the water within the crack and consider the relationship between the water pressure and the crack opening distance. The cohesive crack model is used to analyse the non-linear fracture process zone. The numerical results are compared with experimental data, indicating that the F-CMOD curves and water pressure changes under different loading conditions are approximately the same. Different types of water pressure distributions are also studied with the proposed coupled model, and the results show that the internal water pressure distribution has an important influence on crack propagation.

A TWO-DIMENSIONAL FINITE VOLUME MODEL IN NONORTHOGONAL COORDINATE SYSTEM

  • Kim, Chang-Wan;Lee, Bong-Hee;Cho, Yong-Sik;Yoon, Tae-Hoon
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.151-160
    • /
    • 2001
  • A two-dimensional flow model is newly developed. Two-dimensional shallow-water equations are discretized by the finite volume method. A nonorthogonal coordinate system is then employed. The developed model is applied to simulations of flows in a 180 degree curved bend flow. Numerical prediction are compared to available laboratory measurement. A good agreement is observed.

  • PDF

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC INTEGRODIFFERENTIAL PROBLEMS

  • Li, Huanrong;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.35-49
    • /
    • 2003
  • In this paper, finite volume element methods for nonlinear parabolic integrodifferential problems are proposed and analyzed. The optimal error estimates in $L^p\;and\;W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ as well as some superconvergence estimates in $W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ are obtained. The main results in this paper perfect the theory of FVE methods.

  • PDF