Browse > Article
http://dx.doi.org/10.12989/sem.2021.80.5.553

Hydraulic fracture simulation of concrete using the SBFEM-FVM model  

Zhang, Peng (Nanjing Institute of Technology)
Du, Chengbin (Department of Engineering Mechanics, Hohai University)
Zhao, Wenhu (Department of Engineering Mechanics, Hohai University)
Zhang, Deheng (Nanjing Institute of Technology)
Publication Information
Structural Engineering and Mechanics / v.80, no.5, 2021 , pp. 553-562 More about this Journal
Abstract
In this paper, a hybrid scaled boundary finite element and finite volume method (SBFEM-FVM) is proposed for simulating hydraulic-fracture propagation in brittle concrete materials. As a semi-analytical method, the scaled boundary finite element method is introduced for modelling concrete crack propagation under both an external force and water pressure. The finite volume method is employed to model the water within the crack and consider the relationship between the water pressure and the crack opening distance. The cohesive crack model is used to analyse the non-linear fracture process zone. The numerical results are compared with experimental data, indicating that the F-CMOD curves and water pressure changes under different loading conditions are approximately the same. Different types of water pressure distributions are also studied with the proposed coupled model, and the results show that the internal water pressure distribution has an important influence on crack propagation.
Keywords
concrete crack propagation; coupling; finite volume method; hydraulic fracture; scaled boundary finite element method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chen, X., Du, C., You, M., Jiang, S. and Sun, L. (2017), "Experimental study on water fracture interactions in concrete", Eng. Fract. Mech., 179, 314-327. https://doi.org/10.1016/j.engfracmech.2017.04.050.   DOI
2 Adachi, J., Siebrits, E. and Peirce, A. (2007), "Computer simulation of hydraulic fractures", Int. J. Rock Mech. Min. Sci., 44(5), 739-757. https://doi.org/10.1016/j.ijrmms.2006.11.006.   DOI
3 Zhang, X. and Bui, T.Q. (2015), "A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures", Eng. Comput., 32(2), 473-497. https://doi.org/10.1108/EC-08-2013-0203.   DOI
4 Liu, J., Lin, G., Hu, Z., et al. (2009), "Effect of water pressure distribution in cracks on fracture characteristics of gravity dams", J. Civil Eng., 42, 132-141. (in Chinese) https://doi.org/10.1007/s10965-008-9216-0.   DOI
5 Jiang, S. and Du, C. (2017), "Coupled finite volume methods and extended finite element methods for the dynamic crack propagation modelling with the pressurized crack surfaces", Shock Vib., 2017, 1-16. https://doi.org/10.1155/2017/3751340.   DOI
6 Jiang, S., Du, C. and Gu, C. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. https://doi.org/10.12989/sem.2014.49.5.597.   DOI
7 Liu, C., Shen, Z. and Gan, L. (2018), "A hybrid finite volume and extended finite element method for hydraulic fracturing with cohesive crack propagation in quasi-brittle materials", Mater., 11(10), 1921. https://doi.org/10.3390/ma11101921.   DOI
8 Funari, M.F., Lonetti, P. and Spadea, S. (2019), "A crack growth strategy based on moving mesh method and fracture mechanics", Theor. Appl. Fract. Mech., 102, 103-115. https://doi.org/10.1016/j.tafmec.2019.03.007.   DOI
9 Dai, S., Augarde, C., Du, C. and Chen, D. (2015), "A fully automatic polygon scaled boundary finite element method for modelling crack propagation", Eng. Fract. Mech., 133, 163-178. https://doi.org/10.1016/j.engfracmech.2014.11.011.   DOI
10 Fang, X. and Jin, F. (2007), "Coupled model of interaction between crack flow and concrete cracking", J. Hydraul. Eng., 38(12), 1466-1474. https://doi.org/10.3321/j.issn:0559-9350.2007.12.009.   DOI
11 Menouillard, T. and Belytschko, T. (2010), "Smoothed nodal forces for improved dynamic crack propagation modeling in XFEM", Int. J. Numer. Meth. Eng., 84(1), 47-72. https://doi.org/10.1002/nme.2882.   DOI
12 Song, C. (2006), "Analysis of singular stress fields at multi-material corners under thermal loading", Int. J. Numer. Meth. Eng., 65(5), 620-652. https://doi.org/10.1002/nme.1456.   DOI
13 Funari, M.F., Greco, F., Lonetti, P. and Spadea, S. (2019), "A numerical model based on ALE formulation to predict crack propagation in sandwich structures", Frattura ed Integrita Strutturale, 47, 277-293. https://doi.org/10.3221/IGF-ESIS.47.21.   DOI
14 Wang, Y., Hu, S., Lu, J. and Qiao, Y. (2019), "A note on the fracture behavior of concrete beams within water pressure under different loading rates", KSCE. J. Civil Eng., KSCE, 23(9), 3993-3999. https://doi.org/10.1007/s12205-019-1823-2.   DOI
15 Song, C. (2004), "A matrix function solution for the scaled boundary finite-element equation in statics", Comput. Meth. Appl. M., 193(23), 2325-2356. https://doi.org/10.1016/j.cma.2004.01.017.   DOI
16 Song, C. and Wolf, J.P. (1997), "The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics", Comput. Meth. Appl. M., 147(3), 329-355. https://doi.org/10.1016/ S0045-7825(97)00021-2.   DOI
17 Versteeg, H.K. and Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education, Essex, UK.
18 Yu, H. and Zhou, C. (2017), "Sandwich diffusion model for moisture absorption of flax/glass fiber reinforced hybrid composite", Compos. Struct, 188, 1-6. https://doi.org/10.1016/j.compstruct.2017.12.061.   DOI
19 Nishioka, T. (1997), "Computational dynamic fracture mechanics", Int. J. Fract., 86, 127-159. https://doi.org/10.1023/a:1007376924191.   DOI
20 Chopra, A.K. (1967), "Hydrodynamic pressures on dams during earthquakes", J. Eng. Mech. Div., 93(6), 205-224.   DOI
21 Song, C. and Wolf, J.P. (2002), "Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method", Comput. Struct., 80(2), 183-197. https://doi.org/10.1016/S0045-7949(01)00167-5.   DOI
22 Tian, X., Du, C., Dai, S. and Chen, D. (2018), "Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM", Struct. Eng. Mech., 66(5), 649-663. https://doi.org/10.12989/sem.2018.66.5.649.   DOI
23 Volokh, K.Y. and Needleman, A. (2002), "Buckling of sandwich beams with compliant interfaces", Comput. Struct., 80, 1329-1335. https://doi.org/10.1016/S0045-7949(02)00076-7.   DOI
24 Hunsweck, M.J., Shen, Y.X. and Lew, A.J. (2013), "A finite element approach to simulation of hydraulic fractures with lag", Int. J. Numer. Anal. Meter., 37(9), 993-1015. https://doi.org/10.1002/nag.1131.   DOI
25 Chen, B., Sun, Y., Barboza, B.R., Barron, A.R. and Li, C. (2020), "Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver", Eng. Fract. Mech., 229, 106928. https://doi.org/10.1016/j.engfracmech.2020.106928.   DOI
26 Wen, G., Liu, H. and Huang, H. (2018), "Meshless method simulation and experimental investigation of crack propagation of CBM hydraulic fracturing", Oil Gas Sci. Technol., 73(72), 1-17. https://doi.org/10.2516/ogst/2018074.   DOI
27 Yang, Z.J. and Deeks, A.J. (2007), "Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method", Eng. Fract. Mech., 74(16), 2547-2573. https://doi.org/10.1016/j.engfracmech.2006.12.001.   DOI
28 Zhang, P., Du, C., Zhao, W. and Sun, L. (2021), "Dynamic crack face contact and propagation simulation based on the scaled boundary finite element method", Comput. Meth. Appl. M., 385, 114044. https://doi.org/10.1016/j.cma.2021.114044.   DOI
29 Song, C. (2018), The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation, John Wiley & Sons, Ltd., Chichester, West Sussex, UK.
30 Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement. Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.   DOI
31 Wang, K., Zhang, Q., Xia, X., Wang, L. and Liu, X. (2015), "Analysis of hydraulic fracturing in concrete dam considering fluid-structure interaction using XFEM-FVM model", Eng. Fail. Anal., 57, 399-412. https://doi.org/10.1016/j.engfailanal.2015.07.012.   DOI
32 Shi, L., Yu, T. and Bui, T.Q. (2015), "Numerical modelling of hydraulic fracturing in rock mass by XFEM", Soil. Mech. Found. Eng., 52(2), 74-83. https://doi.org/10.1007/s11204-015-9309-9.   DOI
33 Chiong, I., Ooi, E.T. and Song, C. (2014), "Scaled boundary polygons with application to fracture analysis of functionally graded materials", Int. J. Numer. Meth. Eng., 98(8), 562-589. https://doi.org/10.1002/nme.4645.   DOI
34 Shahani, A.R. and Fasakhodi, M.R.A. (2009), "Finite element analysis of dynamic crack propagation using remeshing technique", Mater. Des., 30(4), 1032-1041. https://doi.org/10.1016/j.matdes.2008.06.049.   DOI
35 Deeks, A.J. and Wolf, J.P. (2002), "A virtual work derivation of the scaled boundary finite-element method for elastostatics", Comput. Mech., 28(6), 489-504. https://doi.org/10.1007/s00466-002-0314-2.   DOI
36 Zhong, H., Li, H., Ooi, E.T. and Song, C. (2018), "Hydraulic fracture at the dam-foundation interface using the scaled boundary finite element method coupled with the cohesive crack model", Eng. Anal. Bound. Elem., 88, 41-53. https://doi.org/10.1016/j.enganabound.2017.11.009.   DOI
37 Bruhwiler, E. and Saouma, V.E. (1995), "Water fracture interaction in concrete-Part I: Fracture properties", ACI. Mater. J., 92(3), 296-303.
38 Bui, T.Q., Nguyen, N.T. and Nguyen, M.N. (2018), "Analysis of transient dynamic fracture parameters of cracked functionally graded composites by improved meshfree methods", Theor. Appl. Fract. Mech., 96, 642-657. https://doi.org/10.1016/j.tafmec.2017.10.005.   DOI
39 Chen, D., Birk, C., Song, C. and Du, C. (2014), "A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method", Int. J. Numer. Meth. Eng., 97(13), 937-959. https://doi.org/10.1002/nme.4613.   DOI