• Title/Summary/Keyword: finite type

Search Result 3,382, Processing Time 0.025 seconds

A Development of Fixed Address Type Automatic Tool Change System for Machine Tool (공작기계용 고정번지식 자동 공구교환 시스템 개발)

  • 이춘만;허영진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1150-1153
    • /
    • 2003
  • Recently, Many studies have been undergoing to reduce a working time in a field of machine tool. There are two ways of reducing working time; to reduce actual working time by heighten spindle speed and to reduce stand-by time by shortening tool exchange time. Automatic tool change system belongs to the latter case. Fixed address type automatic tool change system that is being developed in this study can store more number of tool in small space than magazine transfer type automatic tool changer as well as shorten tool exchange time. In this paper, a simplified equivalent model of finite element method in order to analyze frame structure of fixed address type automatic tool change system is presented.

  • PDF

EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS

  • Kim, Young-Tae
    • Honam Mathematical Journal
    • /
    • v.29 no.3
    • /
    • pp.415-425
    • /
    • 2007
  • The normal basis has the advantage that the result of squaring an element is simply the right cyclic shift of its coordinates in hardware implementation over finite fields. In particular, the optimal normal basis is the most efficient to hardware implementation over finite fields. In this paper, we propose an efficient parallel architecture which transforms the Gaussian normal basis multiplication in GF($2^m$) into the type-I optimal normal basis multiplication in GF($2^{mk}$), which is based on the palindromic representation of polynomials.

SAMPLING THEOREMS ASSOCIATED WITH DIFFERENTIAL OPERATORS WITH FINITE RANK PERTURBATIONS

  • Annaby, Mahmoud H.;El-Haddad, Omar H.;Hassan, Hassan A.
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.969-990
    • /
    • 2016
  • We derive a sampling theorem associated with first order self-adjoint eigenvalue problem with a finite rank perturbation. The class of the sampled integral transforms is of finite Fourier type where the kernel has an additional perturbation.

Influence of microthread design on marginal cortical bone strain developement: A finite element analysis (임플란트 경부 미세나사 디자인이 치밀골의 스트레인에 미치는 영향)

  • Chun, Seung-Geun;Cho, Jin-Hyun;Jo, Kwang-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.215-223
    • /
    • 2010
  • Purpose: The present study was aimed to evaluate the level of cortical bone strain during the placement of an implant. The primary concern was to investigate if the extent of overloading area near the marginal bone could be affected by microthread fabricated at the cervical 1/3 of an implant. Materials and methods: Three dimensional finite element analysis was used to simulate the insertion of 3 implants. Control model was $4.1{\times}10$ mm implant (Submerged model, Dentis Co,, Daegu, Korea) equipped with a main thread only. Type I was with main thread and microthread, and Type II had similar thread pattern but was of tapered body. A PC-based finite element software (DEFORM 3D ver 5, SFTC, Columbus, OH, USA) was used to calculate a total of 3,600 steps of analysis, which simulated the whole insertion. Results: Results showed that the strain field in the marginal bone within 1 mm of the implant wall was higher than 4,000 micro-strain in the control model. The size of bone overloading was 1-1.5 mm in Type I, and greater than 2 mm in Type II implants. Conclusion: These results indicate that the marginal bone may be at the risk of resorption on receiving the implant for all 3 implant models studied. Yet, the risk was greater for Type I and Type II implants, which had microthread at the cervical 1/3.

Stress Analysis of Fir-Tree Root in Turbine Rotor Using Photoelastic Technique (광탄성기법을 이용한 터빈로터 퍼-트리부의 응력해석)

  • Sin, Gwang-Bok;Gyeong, U-Min;Hong, Chang-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1784-1797
    • /
    • 1996
  • The disk/blade assembly of a turbine engine is made in the shape of a dovetail type or a fir-tree type. Since disk fillet regions or contact surfaces undergo high stress comcentration, fatigue cracks frequentrly occur in the disk/blade assembly. Therefore, it is necessary to analyze the stress distributions in the fir-tree type disk/balde assembly and predict the region of fatigue failure. The stress distributions of the disk/blade assembly were investigated by using the photoelastic method and the finite element method. Two dimensional photoelastic techniques were used to investigate the stress distributions of contact surfaces and fillet regions. TH stress distributions were obtained by the shear-difference method and were compared to the finite element results. It was found that maximum tensile stresses were higher in the fillet region thatn in the contact surfaces of the fir-tree models. The finite element results showed good agreement with the experimental results.

ON SOME L1-FINITE TYPE (HYPER)SURFACES IN ℝn+1

  • Kashani, Seyed Mohammad Bagher
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • We say that an isometric immersed hypersurface x : $M^n\;{\rightarrow}\;{\mathbb{R}}^{n+1}$ is of $L_k$-finite type ($L_k$-f.t.) if $x\;=\;{\sum}^p_{i=0}x_i$ for some positive integer p < $\infty$, $x_i$ : $M{\rightarrow}{\mathbb{R}}^{n+1}$ is smooth and $L_kx_i={\lambda}_ix_i$, ${\lambda}_i\;{\in}\;{\mathbb{R}}$, $0{\leq}i{\leq}p$, $L_kf=trP_k\;{\circ}\;{\nabla}^2f$ for $f\;{\in}\'C^{\infty}(M)$, where $P_k$ is the kth Newton transformation, ${\nabla}^2f$ is the Hessian of f, $L_kx\;=\;(L_kx^1,\;{\ldots},\;L_kx^{n+1})$, $x=(x^1,\;{\ldots},\;x^{n+1})$. In this article we study the following(hyper)surfaces in ${\mathbb{R}}^{n+1}$ from the view point of $L_1$-finiteness type: totally umbilic ones, generalized cylinders $S^m(r){\times}{\mathbb{R}}^{n-m}$, ruled surfaces in ${\mathbb{R}}^{n+1}$ and some revolution surfaces in ${\mathbb{R}}^3$.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

Numerical studies on axially loaded doubler plate reinforced elliptical hollow section T-joints

  • Sari, Busra;Ozyurt, Emre
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • This paper presents results of numerical studies completed on unreinforced and doubler plate reinforced Elliptical Hollow Section (EHS) T-joints subjected to axial compressive loading on the brace member. Non-linear finite element (FE) models were developed using the finite element code, ABAQUS. Available test data in literature was used to validate the FE models. Subsequently, a parametric study was carried out to investigate the effects of various geometrical parameters of main members and reinforcement plates on the ultimate capacity of reinforced EHS T-joints. The parametric study found that the reinforcing plate significantly increases the ultimate capacity of EHS T-joints up to twice the capacity of the corresponding unreinforced joint. The thickness and length of the reinforcing plate have a positive effect on the ultimate capacity of Type 1 joints. This study, however, found that the capacity of Type 1 orientation is not dependent on the brace-to-chord diameter ratio. As for type 2 orientations, the thickness and length of the reinforcement have a minimal effect on the ultimate capacity. A new design method is introduced to predict the capacity of the reinforced EHS T-joints Type 1 and 2 based on the multiple linear regression analyses.

Verification of Finite Element Model Using the Almen Strip Test and Its Applications to Calculate Residual Stress Distribution (알멘 스트립 시험 모사를 이용한 유한요소모델의 유효성 검증 및 잔류응력분포 계산)

  • Yang, Z.R.;Park, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.172-178
    • /
    • 2012
  • We performed a shot peening test and used a 2-D finite element model which predicts the compressive residual stress distribution below the material's surface. In this study, the concept of 'impact cycle' is introduced to account for the irregularity in the shot's impact position during testing. The impact cycle was imbedded in the finite element model. In the shot peening test, shot bombarded a type-A Almen strip surface with different impact velocities. To verify the proposed finite element model, we compared the deformed cross sectional shape of the Almen strips with the shapes computed by the proposed finite element model. Good agreement was noted between measurements and the finite element model predictions. With the verified finite element model, a series of finite element simulations was conducted to compute the residual stress distribution below the material's surface and the characteristics of these distributions are discussed.