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THE GROUP OF UNITS OF
SOME FINITE LOCAL RINGS III

Sung Sik Woo

Abstract. As a sequel to the papers [2, 3], we will complete our iden-
tification of the groups of units of the finite local rings Z4[X]/(Xk +
2t(X), 2Xr) which is the most general type of finite local rings with a
single nilpotent generator over Z4.

1. Introduction

Consider the ring R=Z4[X]/(Xk+2u(X)Xa, 2Xr) where u(X)=
∑s

i=0 aiX
i

with u(0) = 1, and deg(u) < k−a. We will adopt the convention that X−∞ = 0
so that our ring R can be R = Z4[X]/(Xk) if a = r = −∞; or R = Z4[X]/(Xk+
2Xa) if r = −∞. If a > 0, then the elements of the form 1 + Xf(X), where
f ∈ Z4[X] form a subgroup of U(R) of the group of units which we denote by
U1(R) and we call such an element a 1-unit. In [2, XVIII.2] the group U1(R)
is called the one group of R. If a = 0, then the set of 1-units do not form a
subgroup and in that case we will consider the group of units U(R) of R.

In [2] any finite Z4-algebra which is generated by a single element is of the
form R = Z4[X]/(Xk +2u(X)Xa, 2Xr) with a < r < k and a polynomial u(X)
such that u(0) = 1 and deg(u) < r − a.

In this paper, we will identify the group of units U(R) of R which is a finite
abelian 2-group by decomposing into a direct sum of cyclic subgroups thereby
completing the identification of the groups of units of the finite rings which is
generated by a single nilpotent element. For this we need to find the “natural”
generators of the cyclic subgroups.

As in [3], there is a natural surjective ring homomorphism

φ : Z4[X]/(Xk + 2u(X)Xa, 2Xr) → F2[X]/(Xk)

which induces a surjective group homomorphism which we still call φ,

φ : U(Z4[X]/(Xk + 2u(X)Xa, 2Xr)) → U(F2[X]/(Xk))
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on the groups of units with ker(φ) = T0. Hence we have an exact sequence

(1) → T0 → U(Z4[X]/(Xk + 2uXa, 2Xr))
φ→ U(F2[X]/(Xk)) → (1),

where T0 is generated by ∆ = {−1 + 2Xi | 0 ≤ i < n} with n = k if r =
−∞; and n = r if r > 0. Note that we can choose the generators of T0 by
{−1} ∪ {1 + 2Xi | 0 < i < n}.

When a > 0, we can construct a similar exact sequence for 1-units

(1) → T → U1(Z4[X]/(Xk + 2uXa, 2Xr))
φ1→ U(F2[X]/(Xk)) → (1),

where T = ker(φ1) which is generated by ∆1 = {1 + 2Xi | 0 < i < n} with
n = k if r = −∞; and n = r if r > 0.

We let

Gi = 〈1 + Xi〉 where i is odd with 0 < i < k,

Hj = 〈1 + 2Xj〉 where j is an integer with 0 < j < k and

H0 = 〈−1〉
and let

G =
∑

1≤i:odd<k

Gi, H(l) =
∑

0<i<l

Hi and H+
(l) =

∑

0≤i<l

Hi.

Also note that if U1(R) is well defined, then U(R) = H0 ⊕ U1(R) and T0 =
H0 ⊕ T .

In Section 2, we consider the rings of the form R = Z4[X]/(Xk +2u(X)Xa)
and find a direct sum decomposition of the group of units U(R) of R into a sum
of cyclic subgroups. As we pointed out in [3, Proposition 2.6] the generators
for the group of units of the ring R = Z4[X]/(Xk + 2Xa) do not give rise to a
direct sum decomposition. It turns out that we need to modify the generators
for the group of units of the ring R = Z4[X]/(Xk + 2Xa) to get the generators
of the group of units of the ring R = Z4[X]/(Xk + 2u(X)Xa).

In Section 3, we consider the ring R = Z4[X]/(Xk +2u(X)Xa, 2Xr) and we
identify the group of units. When u = 1 a complete description of the group
of units of R as a direct sum of cyclic groups is given in [3].

We will maintain our notations of [2, 3] which we recall briefly: For a finite
set S of positive integers and a nonnegative integer α we will write S + α =
{i + α | i ∈ S}. And XS =

∑
i∈S Xi as an element of Z4[X]. If S = ∅, then

we define XS = 0.
For a rational number r let brc2 to be the smallest integer greater than or

equal to log2(a). Hence 2brc2 is the smallest 2-power which is greater than
or equal to r. If the order o(G) of a group G is 2n, then we will say the 2-
logarithmic order of G is n and we will write lo2(G) = n or simply lo(G) = n.
For x ∈ G we will write lo2(x) for the 2-logarithmic order of the subgroup
generated by x.
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2. The group of units of the ring R = Z4[X]/(Xk + 2uXa)

In this section we consider the group of units of the ring R = Z4[X]/(Xk +
2u(X)Xa), where u(X) = 1 + Xb1 + · · ·+ Xbs . Also write t(X) = u(X)Xa =
Xa0 + · · ·+ Xas with a0 < · · · < as < k and a0 = a.

Now we look closely at the group structure of T . Let A = {i | 0 < i <
n}, where n = k when r = −∞; and n = r when r > 0. First note that
(1+2Xi)(1+2Xj) = 1+2Xi +2Xj . Hence we can identify the multiplicative
group T with the additive group

T 0 = {2XS ∈ Z4[X] | S ⊂ A}
which also can be identified with 2Zn−1

4 . For a polynomial f(X) = 1 + 2XS

we let f0(X) = f(X)− 1 = 2XS .

As in [3], we will make use of the following simple observation.

Lemma 2.1. Let G be a finite abelian group. Let Gi be subgroups of G such
that

∑
Gi = G and

∏
o(Gi) = o(G). Then G = ⊕Gi.

In [3, Proposition 2.6] we showed that the sum
∑

0<i:odd<k Gi is not a direct
sum if u 6= 1 and a0 ≤ k

2 , a0 6= 1. The next theorem shows how to modify the
generators of Gi to get a direct sum decomposition of U(R).

The cases a = 1, 0 being treated in [3], we will assume that a0 6= 1 and
a0 6= 0.

Theorem 2.2. Let R = Z4[X]/(Xk + 2t(X)), where t(X) = Xa0 + · · ·+ Xas

with a0 < · · · < as and as < k. Using the notations above assume u 6= 1 and
a0 ≤ k

2 , a0 6= 0, 1. Then there is g′i(s) ∈
∑

k−a≤j<k

Gi(j) with k − a ≤ i(s) < k

such that

U1(R) =
⊕

0<i:odd<k

G′i ⊕
⊕

i∈S

Hj

with

G′i =

{
〈1 + Xi〉 with lo(1 + Xi) = ki + 1 for i 6= i(s),
〈g′i(s)〉 with lo(gi(s)) = ki for i = i(s),

and

S = {i | 0 < i < a} ∪ {a + i | 0 < i : odd < k − 2a} ∪ {k − a} if k is even.

Proof. By [3, Lemma 2.1], we know {i2ki−1 | 0 < i : odd < k} = {j | k
2 ≤ j <

k}. For each j with k
2 ≤ j < k let

gj(X) = (1 + Xi(j))2
ki(j)

so that j = i(j)2ki(j) .
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Hence if j = i2ki , then

(1 + Xi)2
ki = 1 + 2Xi2ki−1

+ Xi2ki

= 1 + 2Xi2ki−1
+ 2u(X)Xi2ki−k+a

= 1 + 2Xj + 2uX2j−k+a

which is a generator of Gi ∩T which is cyclic of order 2. Hence we see that the
coefficients of g0

j = (1 + Xi)2
ki − 1 for 0 < i odd < k looks like

X X2 · · · Xa Xa+1 Xa+2 · · · Xk−a Xk−a+1 Xk−a+2 · · · Xk−1

2 ∗ ∗
2 ∗

. . .
0 ∗ ∗ ∗ ∗

2 ∗ ∗ ∗
2 ∗ ∗

. . .
2

The matrix above shows that the row containing 0 is a linear combination of
the rows below. But this means that

(1 + Xi(k−a))2
ki(k−a)

=
∏

j>k−a

(1 + Xi(j))2
ki(j)

.

Let ki(s) be the minimum of ki(j)’s which appear as the exponents in the equal-
ity above. Then

[(1 + Xi(k−a))2
ki(k−a)−ki(s)

]2
ki(s)

= (1 + Xi(s))2
ki(s)

∏

k−a<j 6=s<k

[(1 + Xi(j))2
ki(j)−ki(s)

]2
ki(s)

.

Let

g′i(s) =





(1 + Xi(s))
∏

k−a<j 6=s<k

[(1+Xi(j))2
ki(j)−ki(s) ](1 + Xi(k−a))−2

ki(k−a)−ki(s)

if s 6= k − a,

(1 + Xi(k−a))
∏

k−a<j<k

(1 + Xi(j))−2
ki(j)−ki(k−a) if s = k − a,

and let g′i = gi for i 6= i(s). If we let G′i = 〈g′i〉, then the consideration above
shows that

G′i ∩ T =

{
〈(1 + Xi)2

ki 〉 if 0 < i : odd < k, i 6= i(s),
(1) if i = i(s),

which means, the matrix formed by the coefficients of (g′i)
0 is the same as the

above except that all the entries of the s-th row (k − a ≤ s < k) are made to
be 0 (by using elementary row operations).



THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS III 679

Let

F = {1+2Xi | 0 < i < a}∪{1+2Xa+i | 0 < i : odd < k− 2a}∪{1+2Xk−a}.
Let M be the matrix formed by the coefficients of g0

i with 0 < i : odd< k
together with f0

i (fi ∈ F); and M ′ be the matrix formed by the coefficients of
(g′i)

0 together with f0
i (fi ∈ F). Then the subgroup of 2Zk−1

4 generated by the
rows of M is the same as the subgroup generated by the rows of M ′ since M ′ is
obtained by performing elementary row operations on M . Now it is clear that
the subgroup generated by the rows of M is the whole group 2Zk−1

4 . Therefore
if we let G′ =

∑
G′i, then G′ ∩T1 together with F generate T1. And obviously,

φ(G′) generate U(F2[X]/(Xk)).
Finally we need to check that

∑
0<i:odd<k G′i +

∑
i∈S lo(Hi) is a right num-

ber. But the situation is the same as [3, Theorem 3.4(ii)] and we skip our
computation. ¤

Example 2.3. Let R = Z4[X]/(X5 + 2uX2), where u(X) = 1 + X + X2.
Then lo(U1(R)) = 8. We observe X8 = 2uX5 = 0. Then lo(1 + X) = 4,
lo(1 + X3) = 2. Further

(1 + X)8 = 1 + 2X4,

(1 + X3)2 = 1 + 2X3 + X6

= 1 + 2X3 + 2X3(1 + X + X2)

= 1 + 2X4.

Then G1 ∩G3 = 〈1 + 2X4〉 and (1 + X3)2 = ((1 + X)4)2. And if we take

G′1 = G1,

G′3 = 〈(1 + X3)(1 + X)−4〉,
then G′1 ∩G′3 = 1 and lo(G′3) = 1.

If we let H1 = 〈1 + 2X〉, H2 = 〈1 + 2X2〉, H1 = 〈1 + 2X3〉, then

U(R) = G′1 ⊕G′3 ⊕H1 ⊕H2 ⊕H3.

Example 2.4. Let R = Z4[X]/(X10 + 2uX4), where u(X) = 1 + X + X3.
Then lo(U1(R)) = 18. We observe X2k−4 = X16 = 2uX10 = 0 and k − a =
6 = 3 · 2k3−1. Now we compute

1 + Xi ki + 1 lo(Gi) (1 + Xi)2
ki

1 + X 5 5 (1 + X)2
4

= 1 + 2X8 8
1 + X3 3 3 (1 + X3)4 = 1 + 2X7 + 2X9 6 = k − a = 3 · 2k3−1

1 + X5 2 2 (1 + X5)2 = 1 + 2X4 + 2X5 + 2X7 4
1 + X7 2 2 (1 + X7)2 = 1 + 2X7 + 2X8 + 2X9 7
1 + X9 2 2 (1 + X9)2 = 1 + 2X9 9

The coefficients of (1 + Xi)2
ki − 1 looks like;
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X X2 X3 X4 X5 X6 X7 X8 X9

2 0 0 0 0 0 (1 + X5)2

0 2 0 2 (1 + X3)4

2 2 2 (1 + X7)2

2 0 (1 + X)16

2 (1 + X9)2

The line joining the coefficient 2 of X4 and 0 of X6 has slope − 1
2 and the line

joining the coefficient 0 of X6 and 2 of the coefficient of X9 has slope −1 and
the slope changes at the coefficient 0 of X6.

Hence we see that

(1 + X3)4 = 1 + 2X7 + 2X9

= (1 + 2X7 + 2X8 + 2X9)(1 + 2X8) = (1 + X7)2(1 + X)16.

Now let
g′1 = 1 + X lo(g′1) = 5
g′3 = 1 + X3 lo(g′3) = 3
g′5 = 1 + X5 lo(g′5) = 2
g′7 = (1 + X7)(1 + X3)−2(1 + X)−8 lo(g′7) = 1
g′9 = 1 + X9 lo(g′9) = 2.

Let G′i = 〈g′i〉. Then lo(G′i) = ki + 1 for i 6= 7 and lo(G′7) = 1. Hence∑
lo(G′i) = 5+3+2+1+2 = 13. Note also that G′7∩T = (1) (g′7 is of order 2

and g′7 /∈ Ker(φ)). Further, G′∩T together with {1+2X, 1+2X2, 1+2X3, 1+
2X5, 1+2X6} generate T and

∑
i=1,2,3,5,6 lo(Hi) = 5. Hence we conclude that

U1(R) =
⊕

0<i:odd<10

G′i ⊕
⊕

i=1,2,3,4,6

Hi.

3. Decomposing the group of units of Z4[X]/(Xk + 2uXa, 2Xr)

Throughout this section we let R = Z4[X]/(Xk + 2u(X)Xa, 2Xr), where
0 ≤ a < r < k and u(X) = 1 + Xb1 + · · · + Xbs with a + s < r. Let
t(X) = Xa0 + · · · + Xas with a0 < · · · < as, a0 = a and bi + a = ai for
0 ≤ i ≤ s so that t(X) = Xau(X).

Lemma 3.1. Let R = Z4[X]/(Xk + 2u(X)Xa, 2Xr). Then the number of
elements of U(R) is 2k+r−1 and the group of 1-units U1(R) has order 2k+r−2.

Proof. The proof is the same as [1, Lemma 6.1]. ¤

Lemma 3.2. Let R = Z4[X]/(Xk + 2uXa, 2Xr), where u(X) = 1 + Xb1 +
· · ·+ Xbs . Suppose k ≥ r + a and let α = k + r − a and αi = bk+r−a

i c2. Then
lo(1 + Xi) = αi for all odd integer i (0 < i < k).
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Proof. We know that (1 + Xi)2
αi = 1. We need to check whether (1 +

Xi)2
αi−1

= 1. By [3, Lemma 2.1], we see that {i2ai−1 | 0 < i : odd < α} =
{j | α

2 ≤ j < α}. Now

(1 + Xi)2
αi−1

= 1 + 2Xi2αi−2
+ Xi2αi

= 1 + 2Xi2αi−2
+ 2(Xi2αi−1−k+a + Xi2αi−1−k+a+b1 + · · ·+ Xi2αi−1−k+a+bs)

only if j = i2αi ≥ k. (Otherwise (1 + Xi)2
αi 6= 1.)

On the other hand, k ≥ r + a implies that a < k
2 . Therefore k− a > k

2 ≥ j
2 .

Hence j
2 > j−k+a and consequently (1+Xi)2

αi−1
= 1+2Xi2αi−1−k+a+(hdt) 6=

1. Thus lo(1 + Xi) = αi. ¤
Remark. Note that if we let αi = bk+r−a

i c2, then since k < k + r − a < 2k we
have

ki ≤ αi ≤ ki + 1.

Theorem 3.3. Let R = Z4[X]/(Xk + 2uXa, 2Xr), where u(X) = 1 + Xb1 +
· · · + Xbs with 0 < a < r < k. If k ≥ r + a, then the group of 1-units U1(R)
decomposes into the direct sum:

U1(R) =
⊕

1≤i:odd<k

Gi ⊕
⊕

i∈S

Hi,

where S = {i | 0 < i < a} ∪ {a + l | l : odd > 0, a + l < r}. Here, Gi is the
cyclic subgroup generated by 1 + Xi of order 2αi and Hi is the cyclic subgroup
generated by 1 + 2Xi of order 2.

Proof. First we look at G ∩ T . Since the elements of T are order 2, the only
possible elements in Gi which are in T are of the form (1 + Xi)αi−1 = 1 +
2Xi2αi−2

+Xi2α1−1
. This will belong to T only if i2αi−1 ≥ k. Now {i2αi−1 | 1 ≤

i : odd < α} = {j | α
2 ≤ j < α}, by Lemma 2.1, which we will call S. If j

is odd such that j ≥ k, then αj = 1 and (1 + Xj)αj−1 = (1 + Xj) /∈ T .
Hence the even numbers ≥ k in S is of the form S ′ = {i2αi−1 | i : odd, αi >
1, i2αi−1 ≥ k} = {j : even | k ≤ j < α}. Thence G ∩ T is generated by
{1 + 2X

j
2 + 2u(X)Xj−k+a|j ∈ S ′}.

As in the proof of [3, Theorem 4.1], j
2 > j − k + a and hence G ∩ T is

generated by {1 + 2Xa+2i + (hdt) | i = 0, 1, . . . }. Therefore we are reduced to
the situation of the proof of [3, Theorem 4.1] and we safely omit the proof. ¤
Example 3.4. Let R = Z4[X]/(X20 + 2u(X)X5, 2X12), where u(X) = 1 +
X2+X3. Here we have k+r−a = 27, k ≥ r+a and lo(U1(R)) = k+r−2 = 30.
Also X27 = 2uX12 = 0. Let α = k + r − a = 27 and αi = bα

i c2 = b 27
i c2.

We look at the possible elements of T of the form (1 + Xi)2
αi−1

.
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1 ≤ i : odd < α αi i2αi−1 (1 + Xi)2
αi−1

1 5 24 = 16 1 + 2X8 + X16 not in T
3 4 3 · 23 = 24 1 + 2(X9 + X11)
5 3 5 · 22 = 20 1 + 2X10 + 2(X5 + X7 + X8)
7 2 7 · 2 = 14 1 + 2X7 + X14 not in T
9 2 9 · 2 = 18 1 + 2X9 + X18 not in T
11 2 11 · 2 = 22 1 + 2X11 + 2(X7 + X9 + X10)
13 2 13 · 2 = 26 1 + 2X11

15 1 15 1 + X15 not in T
17 1 17 1 + X17 not in T
19 1 19 1 + X19 not in T
21 21
23 23
25 25 i ≥ k
27 27
29 29

Now we list the coefficients of (1 + Xi)2
αi − 1;

X5 X6 X7 X8 X9 X10 X11 (1 + Xi)2
αi

2 2 2 2 (1 + X5)4

2 2 2 2 (1 + X11)2

2 2 (1 + X3)8

2 (1 + X13)2

Therefore T ∩G together with {1+2X, 1+2X3, 1+2X5, 1+2X7, 1+2X9, 1+
2X11} generate T . Of course φ(G) generate U(F2[X]/(Xk)).

Now ∑

1≤i:odd<20

lo(Gi) =
∑

1≤i:odd<k

αi = 5 + 4 + · · ·+ 1 = 24,

and ∑
{lo(Hi) | i = 1, 3, 5, 7, 9, 11} = 6.

Hence
U1(R) =

⊕

1≤i:odd<20

Gi ⊕
⊕

{Hi|i = 1, 3, 5, 7, 9, 11},

where Gi are cyclic generated by 1 + Xi for each odd i with lo(Gi) = αi; Hi

are cyclic with lo(Hi) = 1 generated by 1 + 2Xi.

Lemma 3.5. Let R = Z4[X]/(Xk + 2uXa, 2Xr), where u(X) = 1 + Xb1 +
· · ·+ Xbs . Suppose k < r + a and a > k

2 . Then lo(1 + Xi) = ri + 1 for all odd
integer i (0 < i < k).

Proof. We know that (1+Xi)2
ri+1

= 1. We need to check whether (1+Xi)2
ri =

1. By [3, Lemma 2.1], we see that {i2ri | 0 < i : odd < 2r} = {j | r ≤ j < 2r}.
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Now

(1 + Xi)2
ri

= 1 + 2Xi2ri−1
+ Xi2ri

= 1 + 2Xi2ri−1
+ 2(Xi2ri−k+a + Xi2ri−k+a+b1 + · · ·+ Xi2ri−k+a+bs)

only if j = i2ri ≥ k. (Otherwise (1 + Xi)2
ri 6= 1.) On the other hand,

a > k
2 together with j = i2ri ≥ k implies that j

2 < j − k + a. Therefore
(1 + Xi)2

ri = 1 + 2Xi2ri−1
+ (hdt) 6= 1. Hence lo(1 + Xi) = ri + 1. ¤

Remark. Note that since k ≤ r + a ≤ 2r ≤ 2k we have

ki ≤ b2r

i
c2 ≤ ki + 1.

Theorem 3.6. Let R = Z4[X]/(Xk + 2uXa, 2Xr), where u(X) = 1 + Xb1 +
· · ·+Xbs with 0 < a < r < k. If k < r+a and a > k

2 , then the group of 1-units
U1(R) decomposes into the direct sum:

U1(R) =
⊕

0<i:odd<k

Gi ⊕
⊕

0<i< k
2

Hi,

where Gi is cyclic generated by 1 + Xi with lo(Gi) = ri + 1 and Hi is cyclic
generated by 1 + 2Xi with lo(Hi) = 1.

Proof. As before consider the exact sequence

(1) → T → U1(Z4[X]/(Xk + 2Xa, 2Xr))
φ→ U(F2[X]/(Xk)) → (1),

where T is generated by 1 + 2Xi where 0 < i < r. As usual we need to show
that G ∩ T together with

⊕
0<i< k

2
Hi generate T when a > k

2 .
By Lemma 2.1, we see that

{i2ri | 0 < i : odd < 2r} = {j | r ≤ j < 2r}
which we call R. If i ∈ R is odd such that i ≥ k, then ri = 0 and hence
(1 + Xi)2

ri
/∈ T . And therefore if n ∈ R is even such that k ≤ n < 2r, then it

is of the form n = i2ri with ri ≥ 1 and i is odd such that 0 < i < 2r (we only
need i for which 0 < i < k). For an odd i with k ≤ j = i2ri and 0 < i < k we
have

(1 + Xi)2
ri = 1 + 2Xi2ri−1

+ Xi2ri

= 1 + 2Xi2ri−1
+ 2uXi2ri−k+a ∈ T.

Since k
2 < a we see that k − a < k

2 and as k ≤ n we conclude that k − a < n
2 .

This in turn implies that n− k + a > n
2 . Thus (1 + Xi)2

ri = 1 + 2X
n
2 +(hdt)

for all n ≥ k
2 .

Thus we conclude that G ∩ T together with {1 + 2Xi | 0 < i < k
2} generate

T by Lemma 2.4.
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To finish our proof we need to show that the sum of the logarithmic order of
our subgroups is the right number. But this is the same as [3, Theorem 4.2]. ¤
Example 3.7. Let R = Z4[X]/(X20 + 2uX11, 2X17), where u(X) = 1 + X2 +
X3. Here we have r + a = 28, k < r + a and a = 11 > 10 = k

2 . Also
lo(U1(R)) = k + r − 2 = 35 and X26 = 2uX17 = 0. Let ri = b r

i c2 so that
ri + 1 = b 2r

i c2.
We look at the possible elements of T of the form (1 + Xi)2

ri .

1 ≤ i : odd < 34 ri i2ri (1 + Xi)2
ri

1 5 32 1 + 2X16

3 3 3 · 23 = 24 1 + 2X12 + 2uX15

5 2 5 · 22 = 20 1 + 2X10 + 2uX11

7 2 7 · 22 = 28 1 + 2X14

9 1 9 · 2 = 18 1 + 2X9 + X18 not in T1

11 1 11 · 2 = 22 1 + 2X11 + 2uX13

13 1 13 · 2 = 26 1 + 2X13

15 1 15 · 2 = 30 1 + 2X15

17 0 17 1 + X17 not in T1

19 0 19 1 + X19 not in T1

21 21
23 23
25 25
27 27 i ≥ k
29 29
31 31
33 33

Now we list the coefficients of (1 + Xi)2
ri ;

X10 X11 X12 X13 X14 X15 X16 (1 + Xi)2
αi

2 2 2 2 (1 + X5)4

2 2 2 2 (1 + X11)2

2 2 (1 + X3)8

2 (1 + X13)2

2 (1 + X7)2

2 (1 + X15)2

2 (1 + X)32

Therefore G ∩ T together with Hi, (i = 1, 2, . . . , 9) generate T .
Now lo(Gi) = ri + 1 and

∑
1≤i:odd<20 lo(Gi) = 26. Further,

∑
lo(Gi) +∑9

i=1 lo(Hi) = 35. Hence

U1(R) =
⊕

1≤i:odd<20

Gi ⊕
⊕

{Hi|i = 1, 2, . . . , 9},
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where Gi are cyclic generated by 1 + Xi for each odd i with lo(Gi) = αi; Hi

are cyclic with lo(Hi) = 1 generated by 1 + 2Xi.

Lemma 3.8. Let R = Z4[X]/(Xk + 2uXa, 2Xr), where u(X) = 1 + Xb1 +
· · · + Xbs . Assume k < a + r and a ≤ k

2 . Then there is an odd i (0 < i < k)
with k − a = i2ri−1, ri ≥ 1. For such an i we have

lo(1 + Xi) =

{
ri + 1 if i2ri−1 + b1 < r,

ri if i2ri−1 + b1 ≥ r.

Proof. By [3, Lemma 2.1], we see that {i2ri | 0 < i : odd < 2r} = {j | r ≤
j < 2r}. If j is even and j ≥ k, then it is of the form i2ri with ri ≥ 1. Our
conditions k < a + r and a ≤ k

2 imply that k ≤ 2(k − a) < 2r. Hence there is
an odd i such that 2(k − a) = i2ri with ri ≥ 1.

Now suppose 2(k − a) = i2ri with ri ≥ 1. Then

(1 + Xi)2
ri

= 1 + 2Xi2ri−1
+ Xi2ri

= 1 + 2Xi2ri−1
+ 2(Xi2ri−k+a + Xi2ri−k+a+b1 + · · ·+ Xi2ri−k+a+bs)

= 1 + 2(Xi2ri−1+b1 + · · ·+ Xi2ri−1+bs).

Now it is clear that the logarithmic order of 1 + Xi is as stated. ¤
Theorem 3.9. Let R = Z4[X]/(Xk + 2uXa, 2Xr), where u(X) = 1 + Xb1 +
· · ·+ Xbs with 0 < a < r < k and u 6= 1. If k < r + a and a ≤ k

2 , then there is
an odd integer j (0 < j < k) such that k − a = j2rj−1 and

U1(R) =
⊕

0<i:odd<k

Gi ⊕
⊕

i<∈S

Hi,

where

S =

{
{0 < i < a} ∪ {a + l|0 < l : odd < k − 2a} ∪ {k − a} when k is even,

{0 < i ≤ a} ∪ {a + l|1 < l : even < k − 2a} ∪ {k − a} when k is odd.

Here, Gi is cyclic generated by 1 + Xi with lo(Gi) = ri + 1 for i 6= j and
lo(Gj) = rj; and Hi is cyclic generated by 1 + 2Xi with lo(Hi) = 1.

Proof. The proof will be similar to the proof of Theorem 2.2. First we need to
investigate G ∩ T . By [3, Lemma 2.1] we see that {i2ri | 0 < i : odd < 2r} =
{n | r ≤ n < 2r} which we call R. We define n(i) and i(n) by

n(i) = i2ri and n = i(n)2ri(n) .

But our assumption implies that r < k− a. On the other hand, since a < r we
have k < a + r < 2r. Therefore we see r < k − a < 2r which shows that there
is j such that k − a = j2rj−1.

The possible elements of Gi ∩ T are (1 + Xi)2
ri with i2ri ≥ k. (It has to be

order 2 and this is the only one of order 2 in Gi and the inequality i2ri ≥ k
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guarantees that it is in Ker(φ).) If n = i2ri ∈ R is odd with n ≥ k, then ri = 0.
Hence (1 + Xi)2

ri
/∈ T . Therefore (1 + Xi)2

ri ∈ T exactly when i2ri ≥ k with
ri ≥ 1 and 0 < i : odd < k which are precisely {n : even | k ≤ n < 2r} which
we will call R′.

If n ∈ R′ with n
2 < k − a (resp. n

2 = k − a, resp. n
2 > k − a), then

n
2 > n − k + a (resp. n

2 = n − k + a, resp. n
2 < n − k + a). Hence G ∩ T is

generated by the following elements




1 + 2(Xn−k+a + (hdt)) when k ≤ n < 2(k − a),
1 + 2(Xa1 + (hdt)) when n

2 = k − a,

1 + 2(X
n
2 + (hdt)) when n

2 > k − a.

As in the proof of Theorem 2.2, the second elements is a linear combination of
the elements if the third type. Let

1 + 2(Xa1 + (hdt)) =
∏

i

(1 + 2(X
n(i)
2 + (hdt))).

But this means that

(1 + Xi( n
2 ))2

ri( n
2 )

=
∏

n
2 >k−a

(1 + Xi(n))2
ri(n)

.

Let ri(s) be the minimum of ri’s. Then

[(1 + Xi( n
2 ))2

ri( n
2 )−ri(s)

]2
ri(s)

= (1 + Xi(s))2
ri(s)

∏
n
2 >k−a, n 6=s

[(1 + Xi(n))2
ki(n)−ri(s)

]2
ri(s)

.

Let

g′i(s) =





(1 + Xi(s))
∏

n
2 >k−a, n 6=s

[(1 + Xi(n))2
ri(n)−ri(s) ](1 + Xi( n

2 ))−2
ri( n

2 )−ri(s)

if s 6= 0,

(1 + Xi( n
2 ))

∏
k−a< n

2 <r

(1 + Xi(n))−2
ri(n)−ri( n

2 )
if s = 0,

and let g′i = gi for i 6= i(s). If we let G′i = 〈g′i〉, then the consideration above
shows that

G′i ∩ T1 =

{
〈(1 + Xi)2

ri 〉 if 0 < i : odd < k, i 6= i(s),
(1) if i = i(s).

Let

F = {1 + 2Xi | 0 < i < a} ∪ {1 + 2Xa+l | 0 < l : odd < k− 2a} ∪ {1 + 2Xk−a}
when k is even; and

F ′ = {1+2Xi | 0 < i ≤ a}∪{1+2Xa+l | 1 < l : even < k−2a}∪{1+2Xk−a}
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when k is odd. As before if we let G′ =
∑

G′i, then G′ ∩ T together with F
generate T . And obviously, φ(G′) generate U(F2[X]/(Xk)).

Finally we need to check that
∑

0<i:odd<k G′i+
∑

i∈S lo(Hi) is a right number.
But this is similar to [3, Theorem 4.2(ii)] and we omit the proof safely. ¤

Example 3.10. Let R = Z4[X]/(X20 +2uX7, 2X17), where u(X) = 1+X2 +
X3. Then we have X30 = 2uX17 = 0. Here we have r + a = 24, k ≤ r + a
and 7 = a ≤ k

2 = 10; and lo(U1(R)) = k + r − 2 = 35. Let ri = b r
i c2 so that

ri + 1 = b 2r
i c2.

We look at the possible elements of T of the form (1 + Xi)2
ri .

1 ≤ i : odd < 34 ri i2ri (1 + Xi)2
ri

1 5 32 1 + 2X16 + 2uX19

3 3 3 · 23 = 24 1 + 2X12 + 2uX11

5 2 5 · 22 = 20 1 + 2X10 + 2uX7

7 2 7 · 22 = 28 1 + 2X14 + 2uX15

9 1 9 · 2 = 18 1 + 2X9 + X18 not in T
11 1 11 · 2 = 22 1 + 2X11 + 2uX9

13 1 13 · 2 = 26 1 + 2X13 + 2uX13

15 1 15 · 2 = 30 1 + 2X15 + 2uX17

17 0 17 1 + X17 not in T
19 0 19 1 + X19 not in T
21 21
23 23
25 25
27 27 i ≥ k
29 29
31 31
33 33

Now we list the coefficients of (1 + Xi)2
ri ;

X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 (1 + Xi)2
αi

2 2 (1 + X5)4

2 2 (1 + X11)2

2 2 2 2 (1 + X3)8

0 2 2 (1 + X13)2

2 2 (1 + X7)4

2 (1 + X15)2

2 (1 + X)32

The table above shows that

(1 + X13)2 = (1 + X15)2(1 + X)32.
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Hence we let {
g′i = 1 + Xi if i is odd < k,

g′13 = (1 + X13)(1 + X15)−1(1 + X)−16,

and let G′i = 〈g′i〉. Then
{

lo(G ′
i) = ri + 1 if i is odd < k,

lo(G ′
13) = ri,

and G ′
13 ∩ T = (1). If we let G ′ = ⊕G ′

i, then it is easy to show that φ(G ′
i)

generate U1(F2[X]/(Xk)). Further, the table above shows that G′∩T together
with

HS =
⊕

i∈S

Hi =
⊕

i∈S

{1 + 2Xi}, where S = {1, 2, 3, 4, 5, 6; 8, 10, 12; 13}

generate T . Now
∑

lo(G ′
i) = 25 and lo(HS) = 10.

Hence
U1(R) =

⊕

1≤i:odd<20

G ′
i ⊕

⊕

i∈S

Hi,

where Gi are cyclic generated by 1 + Xi for each odd i; Hi are cyclic with
lo(Hi) = 1 generated by 1 + 2Xi for i ∈ S.

Theorem 3.11. Let R = Z4[X]/(Xk + 2u(X), 2Xr) where u(X) = 1 + Xb1 +
· · ·+ Xbs . Then the group of units U(R) of R is isomorphic to

U(R) =
⊕

1≤i:odd<k

Gi ⊕
⊕

i∈S

Hi,

where

S =

{
{i : even | 0 ≤ i < r} if k is odd,

{i : odd | 0 < i < r} ∪ {0} if k is even.

Here, Gi is the cyclic group generated by 1 + Xi with lo(Gi) = αi, where
α = k+r and αi = bα

i c2; and Hi is cyclic generated by 1+2Xi with lo(Hi) = 1.

Proof. By the exact sequence

(1) → T0 → U(Z4[X]/(Xk + 2u(X), 2Xr))
φ→ U(F2[X]/(Xk)) → (1),

where T0 =
∑

0≤i<r Hi, we need to show that {1 + 2Xi|i ∈ S} together with
G∩T0 with odd i generate T0 and the sum of our subgroups has the right order
(Recall H0 = 〈−1〉.)

First we look at G ∩ T0. Let α = k + r and αi = bα
i c2. Since the elements

of T0 are of order 2, the only possible elements in G which are in T0 are of
the form (1 + Xi)αi−1 = 1 + 2Xi2αi−2

+ Xi2α1−1
which belong to T0 only if

i2αi−1 ≥ k. Now we know that {i2αi−1 | 1 ≤ i : odd < α} = {j | α
2 ≤ j < α}

which we will call S. If i is odd such that i ≥ k, then αi = 1; i2αi−1 = i
and (1 + Xi)αi−1 = (1 + Xi) /∈ T0. Therefore the even numbers ≥ k in S
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is of the form S′ = {i2αi−1 | i : odd, αi > 1, i2αi−1 ≥ k} = {j : even | k ≤
j < α}. Since j < 2k for j ∈ S we have j

2 > j − k. And hence G ∩ T0 =
{1 + 2Xj−ku(X) + 2X

j
2 |j ∈ S′}. Now by [3, Lemma 2.4] we see that G ∩ T0

together with {1 + 2Xi | i ∈ S} generate T0.
As we already know that φ2(G) generate F2[X]/(Xk) we conclude that G

together with ⊕i∈SHi generate U(R).
Now we need to show that

∑
0<i:odd<k lo(Gi) +

∑
i∈S lo(Hi) = k + r − 1.

But this is the same as [3, Theorem 4.2]. ¤
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