THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS III

Sung Sik Woo

Abstract

As a sequel to the papers [2,3], we will complete our identification of the groups of units of the finite local rings $\mathbb{Z}_{4}[X] /\left(X^{k}+\right.$ $2 t(X), 2 X^{r}$) which is the most general type of finite local rings with a single nilpotent generator over \mathbb{Z}_{4}.

1. Introduction

Consider the ring $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X) X^{a}, 2 X^{r}\right)$ where $u(X)=\sum_{i=0}^{s} a_{i} X^{i}$ with $u(0)=1$, and $\operatorname{deg}(u)<k-a$. We will adopt the convention that $X^{-\infty}=0$ so that our ring R can be $R=\mathbb{Z}_{4}[X] /\left(X^{k}\right)$ if $a=r=-\infty$; or $R=\mathbb{Z}_{4}[X] /\left(X^{k}+\right.$ $\left.2 X^{a}\right)$ if $r=-\infty$. If $a>0$, then the elements of the form $1+X f(X)$, where $f \in \mathbb{Z}_{4}[X]$ form a subgroup of $U(R)$ of the group of units which we denote by $U_{1}(R)$ and we call such an element a 1-unit. In [2, XVIII.2] the group $U_{1}(R)$ is called the one group of R. If $a=0$, then the set of 1 -units do not form a subgroup and in that case we will consider the group of units $U(R)$ of R.

In [2] any finite \mathbb{Z}_{4}-algebra which is generated by a single element is of the form $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X) X^{a}, 2 X^{r}\right)$ with $a<r<k$ and a polynomial $u(X)$ such that $u(0)=1$ and $\operatorname{deg}(u)<r-a$.

In this paper, we will identify the group of units $U(R)$ of R which is a finite abelian 2-group by decomposing into a direct sum of cyclic subgroups thereby completing the identification of the groups of units of the finite rings which is generated by a single nilpotent element. For this we need to find the "natural" generators of the cyclic subgroups.

As in [3], there is a natural surjective ring homomorphism

$$
\phi: \mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X) X^{a}, 2 X^{r}\right) \rightarrow \mathbb{F}_{2}[X] /\left(X^{k}\right)
$$

which induces a surjective group homomorphism which we still call ϕ,

$$
\phi: U\left(\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X) X^{a}, 2 X^{r}\right)\right) \rightarrow U\left(\mathbb{F}_{2}[X] /\left(X^{k}\right)\right)
$$

Received August 19, 2007.
2000 Mathematics Subject Classification. 13C12.
Key words and phrases. finite local ring, group of units.
on the groups of units with $\operatorname{ker}(\phi)=T_{0}$. Hence we have an exact sequence

$$
(1) \rightarrow T_{0} \rightarrow U\left(\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}, 2 X^{r}\right)\right) \xrightarrow{\phi} U\left(\mathbb{F}_{2}[X] /\left(X^{k}\right)\right) \rightarrow(1)
$$

where T_{0} is generated by $\Delta=\left\{-1+2 X^{i} \mid 0 \leq i<n\right\}$ with $n=k$ if $r=$ $-\infty$; and $n=r$ if $r>0$. Note that we can choose the generators of T_{0} by $\{-1\} \cup\left\{1+2 X^{i} \mid 0<i<n\right\}$.

When $a>0$, we can construct a similar exact sequence for 1 -units

$$
(1) \rightarrow T \rightarrow U_{1}\left(\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}, 2 X^{r}\right)\right) \xrightarrow{\phi_{1}} U\left(\mathbb{F}_{2}[X] /\left(X^{k}\right)\right) \rightarrow(1)
$$

where $T=\operatorname{ker}\left(\phi_{1}\right)$ which is generated by $\Delta_{1}=\left\{1+2 X^{i} \mid 0<i<n\right\}$ with $n=k$ if $r=-\infty$; and $n=r$ if $r>0$.

We let

$$
\begin{aligned}
& G_{i}=\left\langle 1+X^{i}\right\rangle \text { where } i \text { is odd with } 0<i<k, \\
& H_{j}=\left\langle 1+2 X^{j}\right\rangle \text { where } j \text { is an integer with } 0<j<k \text { and } \\
& H_{0}=\langle-1\rangle
\end{aligned}
$$

and let

$$
G=\sum_{1 \leq i: \mathrm{odd}<k} G_{i}, H_{(l)}=\sum_{0<i<l} H_{i} \text { and } H_{(l)}^{+}=\sum_{0 \leq i<l} H_{i} .
$$

Also note that if $U_{1}(R)$ is well defined, then $U(R)=H_{0} \oplus U_{1}(R)$ and $T_{0}=$ $H_{0} \oplus T$.

In Section 2, we consider the rings of the form $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X) X^{a}\right)$ and find a direct sum decomposition of the group of units $U(R)$ of R into a sum of cyclic subgroups. As we pointed out in [3, Proposition 2.6] the generators for the group of units of the ring $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 X^{a}\right)$ do not give rise to a direct sum decomposition. It turns out that we need to modify the generators for the group of units of the ring $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 X^{a}\right)$ to get the generators of the group of units of the ring $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X) X^{a}\right)$.

In Section 3, we consider the ring $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X) X^{a}, 2 X^{r}\right)$ and we identify the group of units. When $u=1$ a complete description of the group of units of R as a direct sum of cyclic groups is given in [3].

We will maintain our notations of $[2,3]$ which we recall briefly: For a finite set S of positive integers and a nonnegative integer α we will write $S+\alpha=$ $\{i+\alpha \mid i \in S\}$. And $X^{S}=\sum_{i \in S} X^{i}$ as an element of $\mathbb{Z}_{4}[X]$. If $S=\emptyset$, then we define $X^{S}=0$.

For a rational number r let $\lfloor r\rfloor_{2}$ to be the smallest integer greater than or equal to $\log _{2}(a)$. Hence $2^{\lfloor r\rfloor_{2}}$ is the smallest 2-power which is greater than or equal to r. If the order $o(G)$ of a group G is 2^{n}, then we will say the 2 logarithmic order of G is n and we will write $l o_{2}(G)=n$ or simply $l o(G)=n$. For $x \in G$ we will write $l o_{2}(x)$ for the 2-logarithmic order of the subgroup generated by x.

2. The group of units of the ring $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}\right)$

In this section we consider the group of units of the ring $R=\mathbb{Z}_{4}[X] /\left(X^{k}+\right.$ $2 u(X) X^{a}$), where $u(X)=1+X^{b_{1}}+\cdots+X^{b_{s}}$. Also write $t(X)=u(X) X^{a}=$ $X^{a_{0}}+\cdots+X^{a_{s}}$ with $a_{0}<\cdots<a_{s}<k$ and $a_{0}=a$.

Now we look closely at the group structure of T. Let $\mathfrak{A}=\{i \mid 0<i<$ $n\}$, where $n=k$ when $r=-\infty$; and $n=r$ when $r>0$. First note that $\left(1+2 X^{i}\right)\left(1+2 X^{j}\right)=1+2 X^{i}+2 X^{j}$. Hence we can identify the multiplicative group T with the additive group

$$
T^{0}=\left\{2 X^{S} \in \mathbb{Z}_{4}[X] \mid S \subset \mathfrak{A}\right\}
$$

which also can be identified with $2 \mathbb{Z}_{4}^{n-1}$. For a polynomial $f(X)=1+2 X^{S}$ we let $f^{0}(X)=f(X)-1=2 X^{S}$.

As in [3], we will make use of the following simple observation.
Lemma 2.1. Let G be a finite abelian group. Let G_{i} be subgroups of G such that $\sum G_{i}=G$ and $\prod o\left(G_{i}\right)=o(G)$. Then $G=\oplus G_{i}$.

In [3, Proposition 2.6] we showed that the sum $\sum_{0<i \text { :odd }<k} G_{i}$ is not a direct sum if $u \neq 1$ and $a_{0} \leq \frac{k}{2}, a_{0} \neq 1$. The next theorem shows how to modify the generators of G_{i} to get a direct sum decomposition of $U(R)$.

The cases $a=1,0$ being treated in [3], we will assume that $a_{0} \neq 1$ and $a_{0} \neq 0$.

Theorem 2.2. Let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 t(X)\right)$, where $t(X)=X^{a_{0}}+\cdots+X^{a_{s}}$ with $a_{0}<\cdots<a_{s}$ and $a_{s}<k$. Using the notations above assume $u \neq 1$ and $a_{0} \leq \frac{k}{2}, a_{0} \neq 0,1$. Then there is $g_{i(s)}^{\prime} \in \sum_{k-a \leq j<k} G_{i(j)}$ with $k-a \leq i(s)<k$ such that

$$
U_{1}(R)=\bigoplus_{0<i: \text { odd }<k} G_{i}^{\prime} \oplus \bigoplus_{i \in S} H_{j}
$$

with

$$
G_{i}^{\prime}=\left\{\begin{array}{l}
\left\langle 1+X^{i}\right\rangle \text { with } l o\left(1+X^{i}\right)=k_{i}+1 \text { for } i \neq i(s), \\
\left\langle g_{i(s)}^{\prime}\right\rangle \text { with } l o\left(g_{i(s)}\right)=k_{i} \text { for } i=i(s),
\end{array}\right.
$$

and

$$
S=\{i \mid 0<i<a\} \cup\{a+i \mid 0<i: \text { odd }<k-2 a\} \cup\{k-a\} \text { if } k \text { is even. }
$$

Proof. By [3, Lemma 2.1], we know $\left\{i 2^{k_{i}-1} \mid 0<i\right.$: odd $\left.<k\right\}=\left\{j \left\lvert\, \frac{k}{2} \leq j<\right.\right.$ $k\}$. For each j with $\frac{k}{2} \leq j<k$ let

$$
g_{j}(X)=\left(1+X^{i(j)}\right)^{2^{k_{i}(j)}}
$$

so that $j=i(j) 2^{k_{i(j)}}$.

Hence if $j=i 2^{k_{i}}$, then

$$
\begin{aligned}
\left(1+X^{i}\right)^{2^{k_{i}}} & =1+2 X^{i 2^{k_{i}-1}}+X^{i 2^{k_{i}}} \\
& =1+2 X^{i 2^{k_{i}-1}}+2 u(X) X^{i 2^{k_{i}}-k+a} \\
& =1+2 X^{j}+2 u X^{2 j-k+a}
\end{aligned}
$$

which is a generator of $G_{i} \cap T$ which is cyclic of order 2 . Hence we see that the coefficients of $g_{j}^{0}=\left(1+X^{i}\right)^{2_{i}}-1$ for $0<i$ odd $<k$ looks like

The matrix above shows that the row containing 0 is a linear combination of the rows below. But this means that

$$
\left(1+X^{i(k-a)}\right)^{2^{k_{i(k-a)}}}=\prod_{j>k-a}\left(1+X^{i(j)}\right)^{2^{k_{i}(j)}}
$$

Let $k_{i(s)}$ be the minimum of $k_{i(j)}$'s which appear as the exponents in the equality above. Then

$$
\begin{aligned}
& {\left[\left(1+X^{i(k-a)}\right)^{2^{k_{i(k-a)}-k_{i(s)}}}\right]^{k_{i(s)}} } \\
= & \left(1+X^{i(s)}\right)^{2^{k_{i(s)}}} \prod_{k-a<j \neq s<k}\left[\left(1+X^{i(j)}\right)^{2^{k_{i(j)}-k_{i(s)}}}\right]^{2^{k_{i(s)}}} .
\end{aligned}
$$

Let
$g_{i(s)}^{\prime}=\left\{\begin{aligned} &\left(1+X^{i(s)}\right) \prod_{k-a<j \neq s<k}\left[\left(1+X^{i(j)}\right)^{\left.2^{k_{i(j)}-k_{i(s)}}\right](1+} X^{i(k-a)}\right)^{-2^{k_{i(k-a)}-k_{i(s)}}} \\ &\left(1+X^{i(k-a)}\right)_{k-a<j<k}\left(1+X^{i(j)}\right)^{-2^{k_{i(j)}-k_{i(k-a)}}} \text { if } s \neq k-a, \\ & \text { if } s=k-a,\end{aligned}\right.$
and let $g_{i}^{\prime}=g_{i}$ for $i \neq i(s)$. If we let $G_{i}^{\prime}=\left\langle g_{i}^{\prime}\right\rangle$, then the consideration above shows that

$$
G_{i}^{\prime} \cap T=\left\{\begin{array}{l}
\left\langle\left(1+X^{i}\right)^{2^{k_{i}}}\right\rangle \text { if } 0<i: \text { odd }<k, i \neq i(s) \\
(1) \text { if } i=i(s)
\end{array}\right.
$$

which means, the matrix formed by the coefficients of $\left(g_{i}^{\prime}\right)^{0}$ is the same as the above except that all the entries of the s-th row $(k-a \leq s<k)$ are made to be 0 (by using elementary row operations).

Let
$\mathcal{F}=\left\{1+2 X^{i} \mid 0<i<a\right\} \cup\left\{1+2 X^{a+i} \mid 0<i:\right.$ odd $\left.<k-2 a\right\} \cup\left\{1+2 X^{k-a}\right\}$.
Let M be the matrix formed by the coefficients of g_{i}^{0} with $0<i$: odd $<k$ together with $f_{i}^{0}\left(f_{i} \in \mathfrak{F}\right)$; and M^{\prime} be the matrix formed by the coefficients of $\left(g_{i}^{\prime}\right)^{0}$ together with $f_{i}^{0}\left(f_{i} \in \mathcal{F}\right)$. Then the subgroup of $2 \mathbb{Z}_{4}^{k-1}$ generated by the rows of M is the same as the subgroup generated by the rows of M^{\prime} since M^{\prime} is obtained by performing elementary row operations on M. Now it is clear that the subgroup generated by the rows of M is the whole group $2 \mathbb{Z}_{4}^{k-1}$. Therefore if we let $G^{\prime}=\sum G_{i}^{\prime}$, then $G^{\prime} \cap T_{1}$ together with \mathcal{F} generate T_{1}. And obviously, $\phi\left(G^{\prime}\right)$ generate $U\left(\mathbb{F}_{2}[X] /\left(X^{k}\right)\right)$.

Finally we need to check that $\sum_{0<i: \text { odd }<k} G_{i}^{\prime}+\sum_{i \in S} l o\left(H_{i}\right)$ is a right number. But the situation is the same as [3, Theorem 3.4(ii)] and we skip our computation.

Example 2.3. Let $R=\mathbb{Z}_{4}[X] /\left(X^{5}+2 u X^{2}\right)$, where $u(X)=1+X+X^{2}$. Then $l o\left(U_{1}(R)\right)=8$. We observe $X^{8}=2 u X^{5}=0$. Then $l o(1+X)=4$, $l o\left(1+X^{3}\right)=2$. Further

$$
\begin{aligned}
(1+X)^{8} & =1+2 X^{4} \\
\left(1+X^{3}\right)^{2} & =1+2 X^{3}+X^{6} \\
& =1+2 X^{3}+2 X^{3}\left(1+X+X^{2}\right) \\
& =1+2 X^{4}
\end{aligned}
$$

Then $G_{1} \cap G_{3}=\left\langle 1+2 X^{4}\right\rangle$ and $\left(1+X^{3}\right)^{2}=\left((1+X)^{4}\right)^{2}$. And if we take

$$
\begin{aligned}
& G_{1}^{\prime}=G_{1} \\
& G_{3}^{\prime}=\left\langle\left(1+X^{3}\right)(1+X)^{-4}\right\rangle
\end{aligned}
$$

then $G_{1}^{\prime} \cap G_{3}^{\prime}=1$ and $l o\left(G_{3}^{\prime}\right)=1$.
If we let $H_{1}=\langle 1+2 X\rangle, H_{2}=\left\langle 1+2 X^{2}\right\rangle, H_{1}=\left\langle 1+2 X^{3}\right\rangle$, then

$$
U(R)=G_{1}^{\prime} \oplus G_{3}^{\prime} \oplus H_{1} \oplus H_{2} \oplus H_{3}
$$

Example 2.4. Let $R=\mathbb{Z}_{4}[X] /\left(X^{10}+2 u X^{4}\right)$, where $u(X)=1+X+X^{3}$. Then $l o\left(U_{1}(R)\right)=18$. We observe $X^{2 k-4}=X^{16}=2 u X^{10}=0$ and $k-a=$ $6=3 \cdot 2^{k_{3}-1}$. Now we compute

$1+X^{i}$	$k_{i}+1$	$l o\left(G_{i}\right)$	$\left(1+X^{i}\right)^{k_{i}}$	
$1+X$	5	5	$(1+X)^{2^{4}}=1+2 X^{8}$	8
$1+X^{3}$	3	3	$\left(1+X^{3}\right)^{4}=1+2 X^{7}+2 X^{9}$	$6=k-a=3 \cdot 2^{k_{3}-1}$
$1+X^{5}$	2	2	$\left(1+X^{5}\right)^{2}=1+2 X^{4}+2 X^{5}+2 X^{7}$	4
$1+X^{7}$	2	2	$\left(1+X^{7}\right)^{2}=1+2 X^{7}+2 X^{8}+2 X^{9}$	7
$1+X^{9}$	2	2	$\left(1+X^{9}\right)^{2}=1+2 X^{9}$	9

The coefficients of $\left(1+X^{i}\right)^{2^{k_{i}}}-1$ looks like;

X	X^{2}	X^{3}	X^{4}	X^{5}	X^{6}	X^{7}	X^{8}	X^{9}	
		2	0	0	0	0	0	$\left(1+X^{5}\right)^{2}$	
				0	2	0	2	$\left(1+X^{3}\right)^{4}$	
					2	2	2	$\left(1+X^{7}\right)^{2}$	
						2	0	$(1+X)^{16}$	
							2	$\left(1+X^{9}\right)^{2}$	

The line joining the coefficient 2 of X^{4} and 0 of X^{6} has slope $-\frac{1}{2}$ and the line joining the coefficient 0 of X^{6} and 2 of the coefficient of X^{9} has slope -1 and the slope changes at the coefficient 0 of X^{6}.

Hence we see that

$$
\begin{aligned}
\left(1+X^{3}\right)^{4} & =1+2 X^{7}+2 X^{9} \\
& =\left(1+2 X^{7}+2 X^{8}+2 X^{9}\right)\left(1+2 X^{8}\right)=\left(1+X^{7}\right)^{2}(1+X)^{16}
\end{aligned}
$$

Now let

$$
\begin{array}{ll}
g_{1}^{\prime}=1+X & l o\left(g_{1}^{\prime}\right)=5 \\
g_{3}^{\prime}=1+X^{3} & l o\left(g_{3}^{\prime}\right)=3 \\
g_{5}^{\prime}=1+X^{5} & l o\left(g_{5}^{\prime}\right)=2 \\
g_{7}^{\prime}=\left(1+X^{7}\right)\left(1+X^{3}\right)^{-2}(1+X)^{-8} & l o\left(g_{7}^{\prime}\right)=1 \\
g_{9}^{\prime}=1+X^{9} & l o\left(g_{9}^{\prime}\right)=2 .
\end{array}
$$

Let $G_{i}^{\prime}=\left\langle g_{i}^{\prime}\right\rangle$. Then $l o\left(G_{i}^{\prime}\right)=k_{i}+1$ for $i \neq 7$ and $l o\left(G_{7}^{\prime}\right)=1$. Hence $\sum l o\left(G_{i}^{\prime}\right)=5+3+2+1+2=13$. Note also that $G_{7}^{\prime} \cap T=(1)\left(g_{7}^{\prime}\right.$ is of order 2 and $\left.g_{7}^{\prime} \notin \operatorname{Ker}(\phi)\right)$. Further, $G^{\prime} \cap T$ together with $\left\{1+2 X, 1+2 X^{2}, 1+2 X^{3}, 1+\right.$ $\left.2 X^{5}, 1+2 X^{6}\right\}$ generate T and $\sum_{i=1,2,3,5,6} l o\left(H_{i}\right)=5$. Hence we conclude that

$$
U_{1}(R)=\bigoplus_{0<i: \text { odd }<10} G_{i}^{\prime} \oplus \bigoplus_{i=1,2,3,4,6} H_{i} .
$$

3. Decomposing the group of units of $\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}, 2 X^{r}\right)$

Throughout this section we let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X) X^{a}, 2 X^{r}\right)$, where $0 \leq a<r<k$ and $u(X)=1+X^{b_{1}}+\cdots+X^{b_{s}}$ with $a+s<r$. Let $t(X)=X^{a_{0}}+\cdots+X^{a_{s}}$ with $a_{0}<\cdots<a_{s}, a_{0}=a$ and $b_{i}+a=a_{i}$ for $0 \leq i \leq s$ so that $t(X)=X^{a} u(X)$.

Lemma 3.1. Let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X) X^{a}, 2 X^{r}\right)$. Then the number of elements of $U(R)$ is 2^{k+r-1} and the group of 1-units $U_{1}(R)$ has order 2^{k+r-2}.

Proof. The proof is the same as [1, Lemma 6.1].
Lemma 3.2. Let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}, 2 X^{r}\right)$, where $u(X)=1+X^{b_{1}}+$ $\cdots+X^{b_{s}}$. Suppose $k \geq r+a$ and let $\alpha=k+r-a$ and $\alpha_{i}=\left\lfloor\frac{k+r-a}{i}\right\rfloor_{2}$. Then $l o\left(1+X^{i}\right)=\alpha_{i}$ for all odd integer $i(0<i<k)$.

Proof. We know that $\left(1+X^{i}\right)^{2^{\alpha_{i}}}=1$. We need to check whether $(1+$ $\left.X^{i}\right)^{2^{\alpha_{i}-1}}=1$. By [3, Lemma 2.1], we see that $\left\{i 2^{a_{i}-1} \mid 0<i:\right.$ odd $\left.<\alpha\right\}=$ $\left\{j \left\lvert\, \frac{\alpha}{2} \leq j<\alpha\right.\right\}$. Now

$$
\begin{aligned}
& \left(1+X^{i}\right)^{2^{\alpha_{i}-1}} \\
= & 1+2 X^{i 2^{\alpha_{i}-2}}+X^{i 2^{\alpha_{i}}} \\
= & 1+2 X^{i 2^{\alpha_{i}-2}}+2\left(X^{i 2^{\alpha_{i}-1}-k+a}+X^{i 2^{\alpha_{i}-1}-k+a+b_{1}}+\cdots+X^{i 2^{\alpha_{i}-1}-k+a+b_{s}}\right)
\end{aligned}
$$

only if $j=i 2^{\alpha_{i}} \geq k$. (Otherwise $\left(1+X^{i}\right)^{2^{\alpha_{i}}} \neq 1$.)
On the other hand, $k \geq r+a$ implies that $a<\frac{k}{2}$. Therefore $k-a>\frac{k}{2} \geq \frac{j}{2}$. Hence $\frac{j}{2}>j-k+a$ and consequently $\left(1+X^{i}\right)^{2^{\alpha_{i}-1}}=1+2 X^{i 2^{\alpha_{i}-1}-k+a}+(\mathrm{hdt}) \neq$ 1. Thus $l o\left(1+X^{i}\right)=\alpha_{i}$.

Remark. Note that if we let $\alpha_{i}=\left\lfloor\frac{k+r-a}{i}\right\rfloor_{2}$, then since $k<k+r-a<2 k$ we have

$$
k_{i} \leq \alpha_{i} \leq k_{i}+1
$$

Theorem 3.3. Let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}, 2 X^{r}\right)$, where $u(X)=1+X^{b_{1}}+$ $\cdots+X^{b_{s}}$ with $0<a<r<k$. If $k \geq r+a$, then the group of 1-units $U_{1}(R)$ decomposes into the direct sum:

$$
U_{1}(R)=\bigoplus_{1 \leq i: \mathrm{odd}<k} G_{i} \oplus \bigoplus_{i \in S} H_{i}
$$

where $S=\{i \mid 0<i<a\} \cup\{a+l \mid l$: odd $>0, a+l<r\}$. Here, G_{i} is the cyclic subgroup generated by $1+X^{i}$ of order $2^{\alpha_{i}}$ and H_{i} is the cyclic subgroup generated by $1+2 X^{i}$ of order 2 .
Proof. First we look at $G \cap T$. Since the elements of T are order 2, the only possible elements in G_{i} which are in T are of the form $\left(1+X^{i}\right)^{\alpha_{i}-1}=1+$ $2 X^{i 2^{\alpha_{i}-2}}+X^{i 2^{\alpha_{1}-1}}$. This will belong to T only if $i 2^{\alpha_{i}-1} \geq k$. Now $\left\{i 2^{\alpha_{i}-1} \mid 1 \leq\right.$ i : odd $<\alpha\}=\left\{j \left\lvert\, \frac{\alpha}{2} \leq j<\alpha\right.\right\}$, by Lemma 2.1, which we will call \mathfrak{S}. If j is odd such that $j \geq k$, then $\alpha_{j}=1$ and $\left(1+X^{j}\right)^{\alpha_{j}-1}=\left(1+X^{j}\right) \notin T$. Hence the even numbers $\geq k$ in \mathfrak{S} is of the form $S^{\prime}=\left\{i 2^{\alpha_{i}-1} \mid i\right.$: odd, $\alpha_{i}>$ $\left.1, i 2^{\alpha_{i}-1} \geq k\right\}=\{j:$ even $\mid k \leq j<\alpha\}$. Thence $G \cap T$ is generated by $\left\{\left.1+2 X^{\frac{j}{2}}+2 u(X) X^{j-k+a} \right\rvert\, j \in S^{\prime}\right\}$.

As in the proof of [3, Theorem 4.1], $\frac{j}{2}>j-k+a$ and hence $G \cap T$ is generated by $\left\{1+2 X^{a+2 i}+(\mathrm{hdt}) \mid i=0,1, \ldots\right\}$. Therefore we are reduced to the situation of the proof of [3, Theorem 4.1] and we safely omit the proof.
Example 3.4. Let $R=\mathbb{Z}_{4}[X] /\left(X^{20}+2 u(X) X^{5}, 2 X^{12}\right)$, where $u(X)=1+$ $X^{2}+X^{3}$. Here we have $k+r-a=27, k \geq r+a$ and $l o\left(U_{1}(R)\right)=k+r-2=30$. Also $X^{27}=2 u X^{12}=0$. Let $\alpha=k+r-a=27$ and $\alpha_{i}=\left\lfloor\frac{\alpha}{i}\right\rfloor_{2}=\left\lfloor\frac{27}{i}\right\rfloor_{2}$.

We look at the possible elements of T of the form $\left(1+X^{i}\right)^{2^{\alpha_{i}-1}}$.

$1 \leq i:$ odd $<\alpha$	α_{i}	$i 2^{\alpha_{i}-1}$	$\left(1+X^{i}\right)^{2^{\alpha_{i}-1}}$	
1	5	$2^{4}=16$	$1+2 X^{8}+X^{16}$	not in T
3	4	$3 \cdot 2^{3}=24$	$1+2\left(X^{9}+X^{11}\right)$	
5	3	$5 \cdot 2^{2}=20$	$1+2 X^{10}+2\left(X^{5}+X^{7}+X^{8}\right)$	
7	2	$7 \cdot 2=14$	$1+2 X^{7}+X^{14}$	not in T
9	2	$9 \cdot 2=18$	$1+2 X^{9}+X^{18}$	not in T
11	2	$11 \cdot 2=22$	$1+2 X^{11}+2\left(X^{7}+X^{9}+X^{10}\right)$	
13	2	$13 \cdot 2=26$	$1+2 X^{11}$	
15	1	15	$1+X^{15}$	not in T
17	1	17	$1+X^{17}$	not in T
19	1	19	$1+X^{19}$	not in T
21		21		
23		23		$i \geq k$
25		25		
27		27		
29		29		

Now we list the coefficients of $\left(1+X^{i}\right)^{2^{\alpha_{i}}}-1$;

X^{5}	X^{6}	X^{7}	X^{8}	X^{9}	X^{10}	X^{11}	$\left(1+X^{i}\right)^{2^{\alpha_{i}}}$
2	2	2		2		$\left(1+X^{5}\right)^{4}$	
	2		2	2	2	$\left(1+X^{11}\right)^{2}$	
				2		2	$\left(1+X^{3}\right)^{8}$
						2	$\left(1+X^{13}\right)^{2}$

Therefore $T \cap G$ together with $\left\{1+2 X, 1+2 X^{3}, 1+2 X^{5}, 1+2 X^{7}, 1+2 X^{9}, 1+\right.$ $\left.2 X^{11}\right\}$ generate T. Of course $\phi(G)$ generate $U\left(\mathbb{F}_{2}[X] /\left(X^{k}\right)\right)$.

Now

$$
\sum_{1 \leq i: \text { odd }<20} l o\left(G_{i}\right)=\sum_{1 \leq i: \text { odd }<k} \alpha_{i}=5+4+\cdots+1=24,
$$

and

$$
\sum\left\{l o\left(H_{i}\right) \mid i=1,3,5,7,9,11\right\}=6 .
$$

Hence

$$
U_{1}(R)=\bigoplus_{1 \leq i: \mathrm{odd}<20} G_{i} \oplus \bigoplus\left\{H_{i} \mid i=1,3,5,7,9,11\right\},
$$

where G_{i} are cyclic generated by $1+X^{i}$ for each odd i with $l o\left(G_{i}\right)=\alpha_{i} ; H_{i}$ are cyclic with $l o\left(H_{i}\right)=1$ generated by $1+2 X^{i}$.
Lemma 3.5. Let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}, 2 X^{r}\right)$, where $u(X)=1+X^{b_{1}}+$ $\cdots+X^{b_{s}}$. Suppose $k<r+a$ and $a>\frac{k}{2}$. Then $l o\left(1+X^{i}\right)=r_{i}+1$ for all odd integer $i(0<i<k)$.

Proof. We know that $\left(1+X^{i}\right)^{2^{r_{i}+1}}=1$. We need to check whether $\left(1+X^{i}\right)^{2^{r_{i}}}=$ 1. By [3, Lemma 2.1], we see that $\left\{i 2^{r_{i}} \mid 0<i\right.$: odd $\left.<2 r\right\}=\{j \mid r \leq j<2 r\}$.

Now

$$
\begin{aligned}
& \left(1+X^{i}\right)^{2^{r_{i}}} \\
= & 1+2 X^{i 2^{r_{i}-1}}+X^{i 2^{r_{i}}} \\
= & 1+2 X^{i 2^{r_{i}-1}}+2\left(X^{i 2^{r_{i}}-k+a}+X^{i 2^{r_{i}}-k+a+b_{1}}+\cdots+X^{i 2^{r_{i}}-k+a+b_{s}}\right)
\end{aligned}
$$

only if $j=i 2^{r_{i}} \geq k$. (Otherwise $\left(1+X^{i}\right)^{2^{r}} \neq 1$.) On the other hand, $a>\frac{k}{2}$ together with $j=i 2^{r_{i}} \geq k$ implies that $\frac{j}{2}<j-k+a$. Therefore $\left(1+X^{i}\right)^{2^{r_{i}}}=1+2 X^{i 2^{r_{i}-1}}+($ hdt $) \neq 1$. Hence $l o\left(1+X^{i}\right)=r_{i}+1$.

Remark. Note that since $k \leq r+a \leq 2 r \leq 2 k$ we have

$$
k_{i} \leq\left\lfloor\frac{2 r}{i}\right\rfloor_{2} \leq k_{i}+1
$$

Theorem 3.6. Let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}, 2 X^{r}\right)$, where $u(X)=1+X^{b_{1}}+$ $\cdots+X^{b_{s}}$ with $0<a<r<k$. If $k<r+a$ and $a>\frac{k}{2}$, then the group of 1 -units $U_{1}(R)$ decomposes into the direct sum:

$$
U_{1}(R)=\bigoplus_{0<i: \mathrm{odd}<k} G_{i} \oplus \bigoplus_{0<i<\frac{k}{2}} H_{i}
$$

where G_{i} is cyclic generated by $1+X^{i}$ with $l o\left(G_{i}\right)=r_{i}+1$ and H_{i} is cyclic generated by $1+2 X^{i}$ with lo $\left(H_{i}\right)=1$.
Proof. As before consider the exact sequence

$$
(1) \rightarrow T \rightarrow U_{1}\left(\mathbb{Z}_{4}[X] /\left(X^{k}+2 X^{a}, 2 X^{r}\right)\right) \xrightarrow{\phi} U\left(\mathbb{F}_{2}[X] /\left(X^{k}\right)\right) \rightarrow(1),
$$

where T is generated by $1+2 X^{i}$ where $0<i<r$. As usual we need to show that $G \cap T$ together with $\bigoplus_{0<i<\frac{k}{2}} H_{i}$ generate T when $a>\frac{k}{2}$.

By Lemma 2.1, we see that

$$
\left\{i 2^{r_{i}} \mid 0<i: \text { odd }<2 r\right\}=\{j \mid r \leq j<2 r\}
$$

which we call \mathfrak{R}. If $i \in \mathfrak{R}$ is odd such that $i \geq k$, then $r_{i}=0$ and hence $\left(1+X^{i}\right)^{2^{r_{i}}} \notin T$. And therefore if $n \in \mathfrak{R}$ is even such that $k \leq n<2 r$, then it is of the form $n=i 2^{r_{i}}$ with $r_{i} \geq 1$ and i is odd such that $0<i<2 r$ (we only need i for which $0<i<k$). For an odd i with $k \leq j=i 2^{r_{i}}$ and $0<i<k$ we have

$$
\begin{aligned}
\left(1+X^{i}\right)^{2^{r_{i}}} & =1+2 X^{i 2^{r_{i}-1}}+X^{i 2^{r_{i}}} \\
& =1+2 X^{i 2^{r_{i}-1}}+2 u X^{i 2^{r_{i}}-k+a} \in T
\end{aligned}
$$

Since $\frac{k}{2}<a$ we see that $k-a<\frac{k}{2}$ and as $k \leq n$ we conclude that $k-a<\frac{n}{2}$. This in turn implies that $n-k+a>\frac{n}{2}$. Thus $\left(1+X^{i}\right)^{2^{r_{i}}}=1+2 X^{\frac{n}{2}}+(\mathrm{hdt})$ for all $n \geq \frac{k}{2}$.

Thus we conclude that $G \cap T$ together with $\left\{1+2 X^{i} \left\lvert\, 0<i<\frac{k}{2}\right.\right\}$ generate T by Lemma 2.4.

To finish our proof we need to show that the sum of the logarithmic order of our subgroups is the right number. But this is the same as [3, Theorem 4.2].
Example 3.7. Let $R=\mathbb{Z}_{4}[X] /\left(X^{20}+2 u X^{11}, 2 X^{17}\right)$, where $u(X)=1+X^{2}+$ X^{3}. Here we have $r+a=28, k<r+a$ and $a=11>10=\frac{k}{2}$. Also $l o\left(U_{1}(R)\right)=k+r-2=35$ and $X^{26}=2 u X^{17}=0$. Let $r_{i}=\left\lfloor\frac{r}{i}\right\rfloor_{2}$ so that $r_{i}+1=\left\lfloor\frac{2 r}{i}\right\rfloor_{2}$.
We look at the possible elements of T of the form $\left(1+X^{i}\right)^{2^{r_{i}}}$.

$1 \leq i:$ odd <34	r_{i}	$i 2^{r_{i}}$	$\left(1+X^{i}\right)^{2^{r_{i}}}$	
1	5	32	$1+2 X^{16}$	
3	3	$3 \cdot 2^{3}=24$	$1+2 X^{12}+2 u X^{15}$	
5	2	$5 \cdot 2^{2}=20$	$1+2 X^{10}+2 u X^{11}$	
7	2	$7 \cdot 2^{2}=28$	$1+2 X^{14}$	
9	1	$9 \cdot 2=18$	$1+2 X^{9}+X^{18}$	not in T_{1}
11	1	$11 \cdot 2=22$	$1+2 X^{11}+2 u X^{13}$	
13	1	$13 \cdot 2=26$	$1+2 X^{13}$	
15	1	$15 \cdot 2=30$	$1+2 X^{15}$	
17	0	17	$1+X^{17}$	not in T_{1}
19	0	19	$1+X^{19}$	not in T_{1}
21		21		
23		23		
25		25		$i \geq k$
27		27		
29		29		
31		31		
33		33		

Now we list the coefficients of $\left(1+X^{i}\right)^{2^{r_{i}}}$;

X^{10}	X^{11}	X^{12}	X^{13}	X^{14}	X^{15}	X^{16}	$\left(1+X^{i}\right)^{2^{\alpha_{i}}}$
2	2		2	2			$\left(1+X^{5}\right)^{4}$
	2		2		2	2	$\left(1+X^{11}\right)^{2}$
		2			2		$\left(1+X^{3}\right)^{8}$
			2				$\left(1+X^{13}\right)^{2}$
				2			$\left(1+X^{7}\right)^{2}$
					2		$\left(1+X^{15}\right)^{2}$
						2	$(1+X)^{32}$

Therefore $G \cap T$ together with $H_{i},(i=1,2, \ldots, 9)$ generate T.
Now $l o\left(G_{i}\right)=r_{i}+1$ and $\sum_{1 \leq i: \text { odd<20 }} l o\left(G_{i}\right)=26$. Further, $\sum l o\left(G_{i}\right)+$ $\sum_{i=1}^{9} l o\left(H_{i}\right)=35$. Hence

$$
U_{1}(R)=\bigoplus_{1 \leq i: \text { odd }<20} G_{i} \oplus \bigoplus\left\{H_{i} \mid i=1,2, \ldots, 9\right\}
$$

where G_{i} are cyclic generated by $1+X^{i}$ for each odd i with $l o\left(G_{i}\right)=\alpha_{i} ; H_{i}$ are cyclic with $l o\left(H_{i}\right)=1$ generated by $1+2 X^{i}$.
Lemma 3.8. Let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}, 2 X^{r}\right)$, where $u(X)=1+X^{b_{1}}+$ $\cdots+X^{b_{s}}$. Assume $k<a+r$ and $a \leq \frac{k}{2}$. Then there is an odd $i(0<i<k)$ with $k-a=i 2^{r_{i}-1}, r_{i} \geq 1$. For such an i we have

$$
l o\left(1+X^{i}\right)= \begin{cases}r_{i}+1 & \text { if } i 2^{r_{i}-1}+b_{1}<r \\ r_{i} & \text { if } i 2^{r_{i}-1}+b_{1} \geq r\end{cases}
$$

Proof. By [3, Lemma 2.1], we see that $\left\{i 2^{r_{i}} \mid 0<i\right.$: odd $\left.<2 r\right\}=\{j \mid r \leq$ $j<2 r\}$. If j is even and $j \geq k$, then it is of the form $i 2^{r_{i}}$ with $r_{i} \geq 1$. Our conditions $k<a+r$ and $a \leq \frac{k}{2}$ imply that $k \leq 2(k-a)<2 r$. Hence there is an odd i such that $2(k-a)=i 2^{r_{i}}$ with $r_{i} \geq 1$.

Now suppose $2(k-a)=i 2^{r_{i}}$ with $r_{i} \geq 1$. Then

$$
\begin{aligned}
& \left(1+X^{i}\right)^{2^{r_{i}}} \\
= & 1+2 X^{i 2^{r_{i}-1}}+X^{i 2^{r_{i}}} \\
= & 1+2 X^{i 2^{r_{i}-1}}+2\left(X^{i 2^{r_{i}}-k+a}+X^{i 2^{r_{i}}-k+a+b_{1}}+\cdots+X^{i 2^{r_{i}}-k+a+b_{s}}\right) \\
= & 1+2\left(X^{i 2^{r_{i}-1}+b_{1}}+\cdots+X^{i 2^{r_{i}-1}+b_{s}}\right)
\end{aligned}
$$

Now it is clear that the logarithmic order of $1+X^{i}$ is as stated.
Theorem 3.9. Let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u X^{a}, 2 X^{r}\right)$, where $u(X)=1+X^{b_{1}}+$ $\cdots+X^{b_{s}}$ with $0<a<r<k$ and $u \neq 1$. If $k<r+a$ and $a \leq \frac{k}{2}$, then there is an odd integer $j(0<j<k)$ such that $k-a=j 2^{r_{j}-1}$ and

$$
U_{1}(R)=\bigoplus_{0<i: \text { odd }<k} G_{i} \oplus \bigoplus_{i<\in S} H_{i},
$$

where
$S=\left\{\begin{array}{l}\{0<i<a\} \cup\{a+l \mid 0<l: \text { odd }<k-2 a\} \cup\{k-a\} \text { when } k \text { is even, } \\ \{0<i \leq a\} \cup\{a+l \mid 1<l: \text { even }<k-2 a\} \cup\{k-a\} \text { when } k \text { is odd. }\end{array}\right.$
Here, G_{i} is cyclic generated by $1+X^{i}$ with $l o\left(G_{i}\right)=r_{i}+1$ for $i \neq j$ and $l o\left(G_{j}\right)=r_{j}$; and H_{i} is cyclic generated by $1+2 X^{i}$ with $l o\left(H_{i}\right)=1$.
Proof. The proof will be similar to the proof of Theorem 2.2. First we need to investigate $G \cap T$. By [3, Lemma 2.1] we see that $\left\{i 2^{r_{i}} \mid 0<i\right.$: odd $\left.<2 r\right\}=$ $\{n \mid r \leq n<2 r\}$ which we call \mathfrak{R}. We define $n(i)$ and $i(n)$ by

$$
n(i)=i 2^{r_{i}} \text { and } n=i(n) 2^{r_{i(n)}} .
$$

But our assumption implies that $r<k-a$. On the other hand, since $a<r$ we have $k<a+r<2 r$. Therefore we see $r<k-a<2 r$ which shows that there is j such that $k-a=j 2^{r_{j}-1}$.

The possible elements of $G_{i} \cap T$ are $\left(1+X^{i}\right)^{2^{r_{i}}}$ with $i 2^{r_{i}} \geq k$. (It has to be order 2 and this is the only one of order 2 in G_{i} and the inequality $i 2^{r_{i}} \geq k$
guarantees that it is in $\operatorname{Ker}(\phi)$.) If $n=i 2^{r_{i}} \in \mathfrak{R}$ is odd with $n \geq k$, then $r_{i}=0$. Hence $\left(1+X^{i}\right)^{2^{r_{i}}} \notin T$. Therefore $\left(1+X^{i}\right)^{2^{r_{i}}} \in T$ exactly when $i 2^{r_{i}} \geq k$ with $r_{i} \geq 1$ and $0<i$: odd $<k$ which are precisely $\{n$: even $\mid k \leq n<2 r\}$ which we will call \mathfrak{R}^{\prime}.

If $n \in \mathfrak{R}^{\prime}$ with $\frac{n}{2}<k-a$ (resp. $\frac{n}{2}=k-a$, resp. $\frac{n}{2}>k-a$), then $\frac{n}{2}>n-k+a$ (resp. $\frac{n}{2}=n-k+a$, resp. $\left.\frac{n}{2}<n-k+a\right)$. Hence $G \cap T$ is generated by the following elements

$$
\begin{cases}1+2\left(X^{n-k+a}+(\mathrm{hdt})\right) & \text { when } k \leq n<2(k-a) \\ 1+2\left(X^{a_{1}}+(\mathrm{hdt})\right) & \text { when } \frac{n}{2}=k-a \\ 1+2\left(X^{\frac{n}{2}}+(\mathrm{hdt})\right) & \text { when } \frac{n}{2}>k-a\end{cases}
$$

As in the proof of Theorem 2.2, the second elements is a linear combination of the elements if the third type. Let

$$
1+2\left(X^{a_{1}}+(\mathrm{hdt})\right)=\prod_{i}\left(1+2\left(X^{\frac{n(i)}{2}}+(\mathrm{hdt})\right)\right)
$$

But this means that

$$
\left(1+X^{i\left(\frac{n}{2}\right)}\right)^{2^{r_{i}\left(\frac{n}{2}\right)}}=\prod_{\frac{n}{2}>k-a}\left(1+X^{i(n)}\right)^{2^{r_{i}(n)}} .
$$

Let $r_{i(s)}$ be the minimum of r_{i} 's. Then

$$
\begin{aligned}
& {\left[\left(1+X^{i\left(\frac{n}{2}\right)}\right)^{2^{\left.r_{i\left(\frac{n}{2}\right.}\right)^{-r_{i(s}}}}\right]^{2_{i(s)}} } \\
= & \left(1+X^{i(s)}\right)^{2^{r_{i(s)}}} \prod_{\frac{n}{2}>k-a, n \neq s}\left[\left(1+X^{i(n)}\right)^{\left.2^{k_{i(n)}-r_{i(s)}}\right]^{r_{i(s)}} .} .\right.
\end{aligned}
$$

Let
$g_{i(s)}^{\prime}=\left\{\begin{array}{cc}\left(1+X^{i(s)}\right) & \prod_{\frac{n}{2}>k-a, n \neq s}\left[\left(1+X^{i(n)}\right)^{\left.2^{r_{i(n)}-r_{i(s)}}\right]\left(1+X^{i\left(\frac{n}{2}\right)}\right)^{\left.-2^{r_{i(n}^{2}}\right)^{-r_{i(s)}}}} \begin{array}{l}\text { if } s \neq 0, \\ \left(1+X^{i\left(\frac{n}{2}\right)}\right)_{k-a<\frac{n}{2}<r}\left(1+X^{i(n)}\right)^{-2^{r_{i(n)}-r_{i\left(\frac{n}{2}\right)}}} \\ \text { if } s=0,\end{array}\right.\end{array}\right.$
and let $g_{i}^{\prime}=g_{i}$ for $i \neq i(s)$. If we let $G_{i}^{\prime}=\left\langle g_{i}^{\prime}\right\rangle$, then the consideration above shows that

$$
G_{i}^{\prime} \cap T_{1}=\left\{\begin{array}{l}
\left\langle\left(1+X^{i}\right)^{2^{r_{i}}}\right\rangle \text { if } 0<i: \text { odd }<k, i \neq i(s), \\
(1) \text { if } i=i(s) .
\end{array}\right.
$$

Let

$$
\mathcal{F}=\left\{1+2 X^{i} \mid 0<i<a\right\} \cup\left\{1+2 X^{a+l} \mid 0<l: \text { odd }<k-2 a\right\} \cup\left\{1+2 X^{k-a}\right\}
$$

when k is even; and
$\mathcal{F}^{\prime}=\left\{1+2 X^{i} \mid 0<i \leq a\right\} \cup\left\{1+2 X^{a+l} \mid 1<l:\right.$ even $\left.<k-2 a\right\} \cup\left\{1+2 X^{k-a}\right\}$
when k is odd. As before if we let $G^{\prime}=\sum G_{i}^{\prime}$, then $G^{\prime} \cap T$ together with \mathcal{F} generate T. And obviously, $\phi\left(G^{\prime}\right)$ generate $U\left(\mathbb{F}_{2}[X] /\left(X^{k}\right)\right)$.

Finally we need to check that $\sum_{0<i \text { :odd }<k} G_{i}^{\prime}+\sum_{i \in S} l o\left(H_{i}\right)$ is a right number. But this is similar to [3, Theorem 4.2(ii)] and we omit the proof safely.

Example 3.10. Let $R=\mathbb{Z}_{4}[X] /\left(X^{20}+2 u X^{7}, 2 X^{17}\right)$, where $u(X)=1+X^{2}+$ X^{3}. Then we have $X^{30}=2 u X^{17}=0$. Here we have $r+a=24, k \leq r+a$ and $7=a \leq \frac{k}{2}=10$; and $l o\left(U_{1}(R)\right)=k+r-2=35$. Let $r_{i}=\left\lfloor\frac{r}{i}\right\rfloor_{2}$ so that $r_{i}+1=\left\lfloor\frac{2 r}{i}\right\rfloor_{2}$.
We look at the possible elements of T of the form $\left(1+X^{i}\right)^{2^{r_{i}}}$.

$1 \leq i:$ odd <34	r_{i}	$i 2^{r_{i}}$	$\left(1+X^{i}\right)^{2^{2}}$	
1	5	32	$1+2 X^{16}+2 u X^{19}$	
3	3	$3 \cdot 2^{3}=24$	$1+2 X^{12}+2 u X^{11}$	
5	2	$5 \cdot 2^{2}=20$	$1+2 X^{10}+2 u X^{7}$	
7	2	$7 \cdot 2^{2}=28$	$1+2 X^{14}+2 u X^{15}$	
9	1	$9 \cdot 2=18$	$1+2 X^{9}+X^{18}$	not in T
11	1	$11 \cdot 2=22$	$1+2 X^{11}+2 u X^{9}$	
13	1	$13 \cdot 2=26$	$1+2 X^{13}+2 u X^{13}$	
15	1	$15 \cdot 2=30$	$1+2 X^{15}+2 u X^{17}$	
17	0	17	$1+X^{17}$	not in T
19	0	19	$1+X^{19}$	not in T
21		21		
23		23		
25		25		
27		27		
29		29		
31		31		
33		33		

Now we list the coefficients of $\left(1+X^{i}\right)^{2^{r_{i}}}$;

X^{7}	X^{8}	X^{9}	X^{10}	X^{11}	X^{12}	X^{13}	X^{14}	X^{15}	X^{16}	$\left(1+X^{i}\right)^{\alpha_{i}}$
2	2								$\left(1+X^{5}\right)^{4}$	
	2			2					$\left(1+X^{11}\right)^{2}$	
			2	2	2	2			$\left(1+X^{3}\right)^{8}$	
					0		2	2	$\left(1+X^{13}\right)^{2}$	
						2	2		$\left(1+X^{7}\right)^{4}$	
							2		$\left(1+X^{15}\right)^{2}$	
								2	$(1+X)^{32}$	

The table above shows that

$$
\left(1+X^{13}\right)^{2}=\left(1+X^{15}\right)^{2}(1+X)^{32}
$$

Hence we let

$$
\left\{\begin{array}{l}
g_{i}^{\prime}=1+X^{i} \text { if } i \text { is odd }<k \\
g_{13}^{\prime}=\left(1+X^{13}\right)\left(1+X^{15}\right)^{-1}(1+X)^{-16}
\end{array}\right.
$$

and let $G_{i}^{\prime}=\left\langle g_{i}^{\prime}\right\rangle$. Then

$$
\left\{\begin{array}{l}
l o\left(G_{i}^{\prime}\right)=r_{i}+1 \text { if } i \text { is odd }<k \\
l o\left(G_{13}^{\prime}\right)=r_{i}
\end{array}\right.
$$

and $G_{13}^{\prime} \cap T=(1)$. If we let $G^{\prime}=\oplus G_{i}^{\prime}$, then it is easy to show that $\phi\left(G_{i}^{\prime}\right)$ generate $U_{1}\left(\mathbb{F}_{2}[X] /\left(X^{k}\right)\right)$. Further, the table above shows that $G^{\prime} \cap T$ together with

$$
H_{S}=\bigoplus_{i \in S} H_{i}=\bigoplus_{i \in S}\left\{1+2 X^{i}\right\}, \quad \text { where } S=\{1,2,3,4,5,6 ; 8,10,12 ; 13\}
$$

generate T. Now $\sum l o\left(G_{i}^{\prime}\right)=25$ and $l o\left(H_{S}\right)=10$.
Hence

$$
U_{1}(R)=\bigoplus_{1 \leq i: \operatorname{odd}<20} G_{i}^{\prime} \oplus \bigoplus_{i \in S} H_{i}
$$

where G_{i} are cyclic generated by $1+X^{i}$ for each odd $i ; H_{i}$ are cyclic with $l o\left(H_{i}\right)=1$ generated by $1+2 X^{i}$ for $i \in S$.

Theorem 3.11. Let $R=\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X), 2 X^{r}\right)$ where $u(X)=1+X^{b_{1}}+$ $\cdots+X^{b_{s}}$. Then the group of units $U(R)$ of R is isomorphic to

$$
U(R)=\bigoplus_{1 \leq i: \mathrm{odd}<k} G_{i} \oplus \bigoplus_{i \in S} H_{i}
$$

where

$$
S=\left\{\begin{array}{l}
\{i: \text { even } \mid 0 \leq i<r\} \text { if } k \text { is odd } \\
\{i: \text { odd } \mid 0<i<r\} \cup\{0\} \text { if } k \text { is even. }
\end{array}\right.
$$

Here, G_{i} is the cyclic group generated by $1+X^{i}$ with $l o\left(G_{i}\right)=\alpha_{i}$, where $\alpha=k+r$ and $\alpha_{i}=\left\lfloor\frac{\alpha}{i}\right\rfloor_{2} ;$ and H_{i} is cyclic generated by $1+2 X^{i}$ with $l o\left(H_{i}\right)=1$.

Proof. By the exact sequence
$(1) \rightarrow T_{0} \rightarrow U\left(\mathbb{Z}_{4}[X] /\left(X^{k}+2 u(X), 2 X^{r}\right)\right) \xrightarrow{\phi} U\left(\mathbb{F}_{2}[X] /\left(X^{k}\right)\right) \rightarrow(1)$,
where $T_{0}=\sum_{0 \leq i<r} H_{i}$, we need to show that $\left\{1+2 X^{i} \mid i \in S\right\}$ together with $G \cap T_{0}$ with odd i generate T_{0} and the sum of our subgroups has the right order (Recall $H_{0}=\langle-1\rangle$.)

First we look at $G \cap T_{0}$. Let $\alpha=k+r$ and $\alpha_{i}=\left\lfloor\frac{\alpha}{i}\right\rfloor_{2}$. Since the elements of T_{0} are of order 2, the only possible elements in G which are in T_{0} are of the form $\left(1+X^{i}\right)^{\alpha_{i}-1}=1+2 X^{i 2^{\alpha_{i}-2}}+X^{i 2^{\alpha_{1}-1}}$ which belong to T_{0} only if $i 2^{\alpha_{i}-1} \geq k$. Now we know that $\left\{i 2^{\alpha_{i}-1} \mid 1 \leq i\right.$: odd $\left.<\alpha\right\}=\left\{j \left\lvert\, \frac{\alpha}{2} \leq j<\alpha\right.\right\}$ which we will call \mathfrak{S}. If i is odd such that $i \geq k$, then $\alpha_{i}=1 ; i 2^{\alpha_{i}-1}=i$ and $\left(1+X^{i}\right)^{\alpha_{i}-1}=\left(1+X^{i}\right) \notin T_{0}$. Therefore the even numbers $\geq k$ in \mathfrak{S}
is of the form $S^{\prime}=\left\{i 2^{\alpha_{i}-1} \mid i\right.$: odd, $\left.\alpha_{i}>1, i 2^{\alpha_{i}-1} \geq k\right\}=\{j$: even $\mid k \leq$ $j<\alpha\}$. Since $j<2 k$ for $j \in S$ we have $\frac{j}{2}>j-k$. And hence $G \cap T_{0}=$ $\left\{\left.1+2 X^{j-k} u(X)+2 X^{\frac{j}{2}} \right\rvert\, j \in S^{\prime}\right\}$. Now by [3, Lemma 2.4] we see that $G \cap T_{0}$ together with $\left\{1+2 X^{i} \mid i \in S\right\}$ generate T_{0}.

As we already know that $\phi_{2}(G)$ generate $\mathbb{F}_{2}[X] /\left(X^{k}\right)$ we conclude that G together with $\oplus_{i \in S} H_{i}$ generate $U(R)$.

Now we need to show that $\sum_{0<i \text { :odd }<k} l o\left(G_{i}\right)+\sum_{i \in S} l o\left(H_{i}\right)=k+r-1$. But this is the same as [3, Theorem 4.2].

References

[1] B. R. McDonald, Finite Rings with Identity, Pure and Applied Mathematics, Vol. 28. Marcel Dekker, Inc., New York, 1974.
[2] S. S. Woo, The group of units of some finite local rings I, J. Korean Math. Soc. 46 (2009), no. 2, 295-311.
[3] , The group of units of some finite local rings II, J. Korean Math. Soc. 46 (2009), no. 3, 475-491.

Department of Mathematics
Ewha Women's University
Seoul 120-750, Korea
E-mail address: sswoo@ewha.ac.kr

