• Title/Summary/Keyword: finite population

Search Result 123, Processing Time 0.163 seconds

A STUDY ON THE OSSEOINTEGRATED PROSTESIS USING THREE DIMENSIONAL FINITE ELEMENT METHOD (골유착성 보철물에 관한 삼차원 유한요소분석적 연구)

  • Kim, Dong-Won;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.167-213
    • /
    • 1991
  • The successful replacement of missing teeth has been one driving aim behind the emergence of implant dentistry as both a technology and clinical vocation for over four decades. To date, a multitude of dental implant devices had been designed and utilized in the patient population. Most of these devices have been designed without support of the engineering criteria. The long-term success of any dental implant is dependent upon the optimization of stresses which occurs during oral function and parafunction. Although many studies have examined the biologic interactions between dental implants and living tissue, few studies have been reported on the biomechanical aspects of dental implants. The purpose of this study was to analyze the stress distribution of osseointegrated prosthesis on certain conditions, such as amount of load, location of load, length of fixtures, number of fixtures used, arch shape, bone quality, etc. Three dimentional finite element analysis was used for this study. FEM models were created using commercial software(Super SAP. for IBM 16 bit AT computer. All elements were 8-node brick, isoparametric. Mandible and prosthesis was modeled with 780 elements and 1074 nodes. The results were as follows : 1. In case of cantilever extension, there was a compressive stress at the base of the first implant and a tensile stress at the base of the second implant. 2. The stresses were linearly proportional to the amount of load. 3. The stresses were linearly proportional to the length of cantilever. 4. There was a stress concentration at the neck of the implant and bone under horizontal loads.

  • PDF

Generalized One-Level Rotation Designs with Finite Rotation Groups Part II : Variance Formulas of Estimators

  • Kim, Kee-Whan;Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.45-62
    • /
    • 2000
  • Rotation design is a sampling technique to reduce response burden and to estimate the population characteristics varying in time. Park and Kim(1999) discussed a generation of one-level rotation design which is called as {{{{r_1^m ~-r_2^m-1}}}} design has more applicable form than existing before. In the structure of {{{{r_1^m ~-r_2^m-1}}}} design, we derive the exact variances of generalized composite estimators for level, change and aggregate level characteristics of interest, and optimal coefficients minimizing their variances. Finally numerical examples are shown by the efficiency of alternative designs relative to widely used 4-8-4 rotation design. This is continuous work of Part Ⅰ studied by Park and Kim(1999).

  • PDF

Multivariate Process Capability Indices for Skewed Populations with Weighted Standard Deviations (가중표준편차를 이용한 비대칭 모집단에 대한 다변량 공정능력지수)

  • Jang, Young Soon;Bai, Do Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.114-125
    • /
    • 2003
  • This paper proposes multivariate process capability indices (PCIs) for skewed populations using $T^2$rand modified process region approaches. The proposed methods are based on the multivariate version of a weighted standard deviation method which adjusts the variance-covariance matrix of quality characteristics and approximates the probability density function using several multivariate Journal distributions with the adjusted variance-covariance matrix. Performance of the proposed PCIs is investigated using Monte Carlo simulation, and finite sample properties of the estimators are studied by means of relative bias and mean square error.

ON THE LEAST INFORMATIVE DISTRIBUTIONS UNDER THE RESTRICTIONS OF SMOOTHNESS

  • Lee, Jae-Won;Park, Sung-Wook;Nikita Vil'checvskiy;Georgiy Shevlyakov
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.755-764
    • /
    • 1998
  • The least informative distributions minimizing Fisher information for location are obtained in the classes of continuously differentiable and piece-wise continuously differentiable densities with the additional restrictions on their values at the median and mode of population in the point and interval forms. The structure of these optimal solutions depends both on the assumptions of smoothness and form of characterizing restrictions of the class of distributions: in the class of continuously differentiable densities, the least informative distributions are finite and have the cosine-type form, and, in the class of piece-wise continuously differentiable densities, the least informative densities have exponential-type tails, the Laplace density in particular. The dependence of optimal solutions on the assumptions of symmetry is also analyzed.

  • PDF

Optimization of Composite Laminates Subjected to High Velocity Impact Using a Genetic Algorithm

  • Nguyen, Khanh-Hung;Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.227-233
    • /
    • 2010
  • In this study, a genetic algorithm was utilized to optimize the stacking sequence of a composite plate subjected to a high velocity impact. The aim is to minimize the maximum backplane displacement of the plate. In the finite element model, we idealized the impactor using solid elements and modeled the composite plate by shell elements to reduce the analysis time. Various tests were carried out to investigate the effect of parameters in the genetic algorithm such as the type of variables, population size, number of discrete variables, and mutation probability.

Structural Damage Detection Using Swarm Intelligence and Model Updating Technique (군집지능과 모델개선기법을 이용한 구조물의 결함탐지)

  • Choi, Jong-Hun;Koh, Bong-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.

Throughput Analysis for Cyclic Queueing Networks with Production Blocking (봉쇄를 갖는 순환 대기네트워크의 수율 분석)

  • Kim, H.G.;Lie, C.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.1
    • /
    • pp.3-15
    • /
    • 1996
  • An approximation algorithm is presented for cyclic queueing networks with finite buffers. The algorithm decomposes the queueing network into individual queues with revised arrival and service process and revised queue capacity. Then, each queue is analyzed in isolation. The service process reflects the additional delay a unit might undergo due to blocking and the arrival process is described by a 2-phases Coxian ($C_2$) distribution. The individual queues are modelled as $C_2/C_2$/1/B queues. The parameters of the individual queues are computed approximately using an iterative scheme. The population constraint of the closed network is taken into account by ensuring that the sum of the average queue lengths of the individual queues is equal to the number of customers of the network. Extensive numerical experiments show that this method provides a fairly good estimation of the throughput.

  • PDF

Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with base isolation

  • Gardoni, Paolo;Trejo, David
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.527-555
    • /
    • 2013
  • This paper proposes probabilistic models for estimating the seismic demands on reinforced concrete (RC) bridges with base isolation. The models consider the shear and deformation demands on the bridge columns and the deformation demand on the isolation devices. An experimental design is used to generate a population of bridges based on the AASHTO LRFD Bridge Design Specifications (AASHTO 2007) and the Caltrans' Seismic Design Criteria (Caltrans 1999). Ground motion records are used for time history analysis of each bridge to develop probabilistic models that are practical and are able to account for the uncertainties and biases in the current, common deterministic model. As application of the developed probabilistic models, a simple method is provided to determine the fragility of bridges. This work facilitates the reliability-based design for this type of bridges and contributes to the transition from limit state design to performance-based design.

A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables

  • Al-Jararha, J.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.137-146
    • /
    • 2015
  • Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same idea is also used to generalize the GREG estimator proposed by Deville and S$\ddot{a}$rndal (1992). It is not an easy task to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned to select values for such parameters based on a random sample. Based on real data set and under simple random sampling without replacement design, our approach is compared with other approaches mentioned in this paper and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the multivariate case of Singh (2013) estimator is more efficient than other estimators.

A Bayesian model for two-way contingency tables with nonignorable nonresponse from small areas

  • Woo, Namkyo;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.245-254
    • /
    • 2016
  • Many surveys provide categorical data and there may be one or more missing categories. We describe a nonignorable nonresponse model for the analysis of two-way contingency tables from small areas. There are both item and unit nonresponse. One approach to analyze these data is to construct several tables corresponding to missing categories. We describe a hierarchical Bayesian model to analyze two-way categorical data from different areas. This allows a "borrowing of strength" of the data from larger areas to improve the reliability in the estimates of the model parameters corresponding to the small areas. Also we use a nonignorable nonresponse model with Bayesian uncertainty analysis by placing priors in nonidentifiable parameters instead of a sensitivity analysis for nonidentifiable parameters. We use the griddy Gibbs sampler to fit our models and compute DIC and BPP for model diagnostics. We illustrate our method using data from NHANES III data on thirteen states to obtain the finite population proportions.