Browse > Article
http://dx.doi.org/10.5139/IJASS.2010.11.3.227

Optimization of Composite Laminates Subjected to High Velocity Impact Using a Genetic Algorithm  

Nguyen, Khanh-Hung (Research Center for Aircraft Parts Technology, School of Mechanical and Aerospace Engineering, Gyeongsang National University)
Ahn, Jeoung-Hee (Research Center for Aircraft Parts Technology, School of Mechanical and Aerospace Engineering, Gyeongsang National University)
Kweon, Jin-Hwe (Research Center for Aircraft Parts Technology, School of Mechanical and Aerospace Engineering, Gyeongsang National University)
Choi, Jin-Ho (Research Center for Aircraft Parts Technology, School of Mechanical and Aerospace Engineering, Gyeongsang National University)
Publication Information
International Journal of Aeronautical and Space Sciences / v.11, no.3, 2010 , pp. 227-233 More about this Journal
Abstract
In this study, a genetic algorithm was utilized to optimize the stacking sequence of a composite plate subjected to a high velocity impact. The aim is to minimize the maximum backplane displacement of the plate. In the finite element model, we idealized the impactor using solid elements and modeled the composite plate by shell elements to reduce the analysis time. Various tests were carried out to investigate the effect of parameters in the genetic algorithm such as the type of variables, population size, number of discrete variables, and mutation probability.
Keywords
High velocity impact; Composite; LS DYNA; LS-OPT; Genetic algorithm;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Arora, J. S. (2004). Introduction to Optimum Design. 2nd ed. New York: Elsevier/Academic Press.
2 Arora, J. S., Huang, M. W., and Hsieh, C. C. (1994). Methods for optimization of nonlinear problems with discrete variables: A review. Structural Optimization, 8, 69-85.   DOI   ScienceOn
3 Baker, A. A., Dutton, S., and Kelly, D. (2004). Composite Materials for Aircraft Structures. 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics.
4 Chambers, A. R., Mowlem, M. C., and Dokos, L. (2007). Evaluating impact damage in CFRP using fibre optic sensors. Composites Science and Technology, 67, 1235-1242.   DOI   ScienceOn
5 Park, I. J., Jung, S. N., Kim, D. H., and Yun, C. Y. (2009). General purpose cross-section analysis program for composite rotor blades. International Journal of Aeronautical and Space Sicences, 10, 77-85.   DOI   ScienceOn
6 Soremekun, G., Gurdal, Z., Haftka, R. T., and Watson, L. T. (2001). Composite laminate design optimization by genetic algorithm with generalized elitist selection. Computers and Structures, 79, 131-143.   DOI   ScienceOn
7 Stander, N., Roux, W., Goel, T., Eggleston, T., and Craig, K. (2008). LS-OPT User’s Manual. Livermore, CA: Livermore Software Technology Corporation.
8 Talebi, H., Wong, S. V., and Hamouda, A. M. S. (2009). Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric. Composite Structures, 87, 314-320.   DOI   ScienceOn
9 Van Hoof, J. (1999). Modelling of Impact Induced Delamination in Composite Materials. PhD Thesis, Carleton University.
10 Walker, M. and Smith, R. E. (2003). A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis. Composite Structures, 62, 123-128.   DOI   ScienceOn
11 Will, M. A., Franz, T., and Nurick, G. N. (2002). The effect of laminate stacking sequence of CFRP filament wound tubes subjected to projectile impact. Composite Structures, 58, 259-270.   DOI   ScienceOn
12 Yong, M., Falzon, B. G., and Iannucci, L. (2008). On the application of genetic algorithms for optimising composites against impact loading. International Journal of Impact Engineering, 35, 1293-1302.   DOI   ScienceOn
13 Chen, J. K., Allahdadi, F. A., and Carney, T. C. (1997). Highvelocity impact of graphite/epoxy composite laminates. Composites Science and Technology, 57, 1369-1379.   DOI   ScienceOn
14 Chen, S. Y. (2001). An approach for impact structure optimization using the robust genetic algorithm. Finite Elements in Analysis and Design, 37, 431-446.   DOI   ScienceOn
15 De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD Thesis, University of Michigan.
16 Fujii, K., Aoki, M., Kiuchi, N., Yasuda, E., and Tanabe, Y. (2002). Impact perforation behavior of CFRPs using high-velocity steel sphere. International Journal of Impact Engineering, 27, 497-508.   DOI   ScienceOn
17 Gower, H. L., Cronin, D. S., and Plumtree, A. (2008). Ballistic impact response of laminated composite panels. International Journal of Impact Engineering, 35, 1000-1008.   DOI   ScienceOn
18 Livermore Software Technology Corporation. (2008). LS-DYNA Keyword User’s Manual. Livermore, CA: Livermore Software Technology Corporation.
19 Kogiso, N., Watson, L. T., Gürdal, Z., and Haftka, R. T. (1994). Genetic algorithms with local improvement for composite laminate design. Structural Optimization, 7, 207-218.   DOI   ScienceOn
20 Lin, C. C. and Lee, Y. J. (2004). Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Composite Structures, 63, 339-345.   DOI   ScienceOn
21 Lopez-Puente, J., Zaera, R., and Navarro, C. (2008). Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Composites Part A: Applied Science and Manufacturing, 39, 374-387.   DOI   ScienceOn
22 Naik, N. K. and Shrirao, P. (2004). Composite structures under ballistic impact. Composite Structures, 66, 579-590.   DOI   ScienceOn