
1. Introduction

Composite materials have been widely used in various 

areas due to their light weight and high specific strength and 

modulus (Baker et al., 2004; Park et al., 2009). An attractive 

property of composite materials is the possibility of tailoring 

the laminate with desired angles, which is not possible in 

conventional metals. A suitable lay-up stacking sequence can 

improve the resistance of the laminate without increasing 

the number of plies. Optimization of the stacking sequence 

is therefore necessary in the design of the composite parts. 

The angle of composite plies is usually distinct, such as 

0, 30, 45, 60, or 90 degrees, for practical manufacturing. 

This engenders optimization problems with discrete or 

discontinuous variables. 

Methods for discrete variable optimization have been 

developed over several decades. These can be classified 

into six categories (Arora et al., 1994): branch and bound, 

simulated annealing, sequential linearization, penalty 

functions, Lagrangian relaxation, and other methods such 

as rounding-off, heuristic, cutting-plane, pure discrete, 

and genetic algorithms. Each method has advantages and 

disadvantages depending on the problem type. 

While conventional methods use a single point at 

each iteration, genetic algorithms are population-based 

approaches. The basic aim of a genetic algorithm is to 

generate a new set of designs (population) from the current 

set in order to improve the average fitness of the population 

(Arora, 2004). Genetic algorithms are global-search 

approaches that can find global optima and have been 

widely used for optimizing composite structures. Kogiso et al. 

(1994) applied a genetic algorithm to the stacking sequence 

optimization of laminated composite plates for bucking load 

maximization. They confirmed that their improvements 

significantly reduced the number of analyses required for 

genetic optimization. Lin and Lee (2004) proposed a precise 

regression so that the local improvement, which helps a 

genetic algorithm to converge sooner, could be done within 

a very short time. Walker and Smith (2003) described a 

technique for the multi-objective optimization of laminated 

composite structures. Soremekun et al. (2001) investigated 

the standard genetic algorithm with an elitist method, which 

was first implemented by De Jong (1975), demonstrating that 

it could not find multiple global optima through a specific 

example. They made modifications in order to improve the 

standard process. 

Researchers have investigated the behavior of composite 

parts under high velocity impact through analytical methods, 
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numerical methods, and experiments. Chen et al. (1997) used 

a smoothed particle hydrodynamics technique in conjunction 

with a macro-homogeneous, anisotropic material concept 

for simulating impact damage and penetration of composite 

structures. Van Hoof (1999) conducted experiments to 

examine the deformation response of materials used in 

ballistic helmets. In addition, a numerical analysis was 

conducted and compared with the experiment. Fujii et al. 

(2002) experimentally investigated the impact perforation 

behavior of various carbon-fiber-reinforced plastic laminates 

impacted by steel spheres with a velocity of 500-1,230 m/s. 

Chambers et al. (2007) evaluated the impact damage in 

carbon fiber reinforced plastic (CFRP) using embedded fiber 

Bragg grating sensors, C-scan, and microscopic analysis. 

Gower et al. (2008) carried out experimental and numerical 

studies to determine the ballistic response of laminated 

Kevlar29 and 129. Naik and Shrirao (2004) investigated the 

ballistic impact behavior of plain weave E-glass/epoxy and 

twill weave/epoxy composites. Talebi et al. (2009) studied 

the projectile nose angle of impact and penetration into high 

strength fabric. Normal and oblique impacts on thin woven 

laminates were investigated by Lopez-Puente et al. (2008) 

through experimental and numerical analyses. Damage 

area, especially the range of delamination, was found to 

increase with the projectile initial velocity for both normal 

and oblique impacts when the impactor velocity was below 

the ballistic limit and vice versa. Will et al. (2002) studied the 

effect of stacking sequence of CFRP filament wound tubes 

subjected to projectile impact.

However, the number of optimization studies of impact 

dynamics on composite structures is limited. This may be 

due to the numerical cost of impact simulations. In addition, 

the simulation of high velocity impacts is still a complicated 

issue and requires more effort to be fully developed. 

Chen (2001) introduced a practical approach for impact 

structure and crash-worthiness optimization. The approach 

took advantage of the global-searching ability of genetic 

algorithms while also considering the instability of explicit 

finite element analysis. Recently, Yong et al. (2008) adopted 

a genetic algorithm to optimize the response of a composite 

laminate due to impact. The genetic algorithm was coupled 

with the explicit finite element package LS DYNA (Livermore 

Software Technology Corporation, Livermore, CA, USA) to 

perform the impact analyses.

A ballistic helmet, as a specific example, must efficiently 

prevent penetration to ensure that brain damage does 

not occur. In this case, energy absorption and backplane 

displacement of the helmet are important factors. The current 

study focuses on the application of a genetic algorithm 

available in LS-OPT (version 3.3; Livermore Software 

Technology Corporation) (Stander et al., 2008) to minimize 

the maximum backplane displacement of a laminated panel 

subjected to a high velocity impact by optimizing its stacking 

sequence. 

The problem is formulated as 

Find:	� stacking sequence [θ1, θ2, θ3,…θ19] of the 

laminate, 

	� where θi is the angle of an individual 

woven composite ply.

to minimize:	� maximum backplane displacement of the 

laminate	 (1)
subject to:	 Impact velocity: 483m/s

	 0° ≤ θi ≤ 90°

We used LS DYNA (version 971) (Livermore Software 

Technology Corporation, 2008) for the backplane 

displacement evaluation. We performed various numerical 

tests to investigate the effects of parameters in the genetic 

algorithm, such as population size, type of variables, 

mutation probability, and a set of discrete variables. We 

made a finite element model by using shell elements for 

the composite plate. In addition, we conducted another test 

using a sequential response surface method for comparison. 

This is the preliminary result of a project that intends to 

develop an efficient modeling methodology for high velocity 

impacts to composite laminates.

Fig. 1. Dimensions of the 1.1-g Fragment Simulation Projectile. Fig. 2. Finite element model.
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2. Finite Element Model

The finite element model was generated based on the work 

of Van Hoof (Van Hoof, 1999). Van Hoof’s study described 

two different Fragment Simulation Projectiles (FSPs): the 

first was the 0.22 calibre FSP weighing 1.1 g, and the second 

was the 0.30 calibre FSP weighing 2.8 g. The impactor was 

highly pressured to hit a Kevlar29 laminated panel fabricated 

in accordance with the military specification MIL-H-44099A. 

The panel had dimensions of 101.6 mm × 152.4 mm and a 

thickness of 9.5 mm with 19 plies laid up. The dimensions 

of the projectile are shown in Fig. 1. Because the simulation 

of the impact problems and optimization are costly jobs, the 

current study intended to optimize the stacking sequences of 

the laminates impacted by the 0.22 calibre FSP only.

The finite element model used is shown in Fig. 2. Due 

to the symmetry of the panel and the projectile, a quarter 

of the panel was generated to reduce the analysis time. 

The projectile was modeled using solid elements, and the 

composite panels were generated with shell elements. 

Material number 59 (MAT #59) in LS DYNA was applied to 

model the composite plies. Even though the solid element 

is preferred in the modeling of the composite panel because 

the solid element can represent thickness effects and 

delamination, modeling and analysis using solid elements 

of even one simulation require significant effort. In addition, 

an optimization process requires many iterations in order 

to reach optimal results, and is definitely a costly task. 

Therefore, shell elements, which can be less accurate but 

are more economical, are chosen in the current study. The 

initial projectile velocity was set to be 483 m/s. The duration 

time in the analysis was 0.2 ms. The material properties of 

the projectile and Kevlar29 are given in Tables 1 and 2 (Van 

Hoof, 1999). 

Table 1. Material properties of Kevlar29 (Van Hoof, 1999)

E11 = E22 (GPa) Inplane modulus 18.5

E33 (GPa) Out of plane modulus 6.0

V21 Poisson’s ratio 0.25

V31 = V32 0.33

G12 (GPa) Inplane shear modulus 0.77

G23 = G31 (GPa) Out of plane shear modulus 5.43

S11 =S22 (MPa) In-plane tensile strength 1,850

S33 (MPa) Through thickness strength 1,200

S12 (MPa) Inplane shear strength 77

S23 = S31 (MPa) Out of plane shear strength 543

Table 2. Material properties of projectiles (Van Hoof, 1999)

E (GPa) Young’s modulus 206.8

V Poisson’s ratio 0.3

Sy (MPa) Yield strength 1,034.2

H (MPa) Hardening modulus 685.0

3. Optimization

The basic steps in a genetic algorithm in LS-OPT are 

illustrated in Fig. 3. First, the population with a pre-

determined size is randomly initialized with randomly 

generated binary chromosomes. There are 19 discrete 

Fig. 3. Simple genetic algorithm.

Fig. 4. �A typical backplane displacement history of the center of the 
panel.
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variables that correspond to 19 different orientations of 

composite plies. The orientation of a single ply corresponds 

to a discrete value in the set of 0, 30, 45, 60, and 90 degrees, 

which is commonly used in a lay-up process.

Next, the objective function (backplane displacement) is 

evaluated using the analysis package LS DYNA. Then, the 

tournament selection available in LS-OPT is used as the 

selection operator. A single-point binary crossover is used 

for the binary encoding of the individuals, and a single 

binary mutation is carried out for the mutation process. A 

complete cycle of selection, crossover, and mutation results 

in a child population. The population size is kept constant 

for both parent and child populations. However, high-fitness 

individuals may be lost while creating a child population 

from the parent population. Therefore, an elitism process, 

which replaces the worst individuals in the child population 

by the best individuals in the parent population, is applied 

in the optimization. We ran test cases with different genetic 

algorithm parameters. These cases and the assigned 

parameters are given in Table 3. In addition to the genetic 

algorithm, we use the sequential response surface method 

(SRSM) in LS-OPT for comparison. When using the SRSM, 

we apply D-Optimal design for experimental sampling.

4. Results and Discussion

A typical displacement history of the panel center in 0.2 

ms after the impact, where the maximum displacement 

occurs at around 0.025 ms, is shown in Fig. 4 with a stacking 

sequence of [45o]19. At the beginning of the time period of 

interest, the panel center point’s displacement increased 

rapidly. The maximum displacement was numerically found 

to be 3.6 mm. The deformations of the panel at the time of 0.1 

ms and 0.2 ms are shown in Fig. 5.

The optimization history of Test 1 is shown in Fig. 6. The 

average fitness (average maximum displacement) gradually 

decreased when the iteration number increased. It shows 

that the characteristic of genetic algorithms tends to improve 

the average fitness of the population.

The history of the minimum of the maximum displacement 

showed a drop point at the 6th iteration. After this, the 

displacement did not substantially change. The optimum 

point was found at the 16th iteration. Even though the last 

iteration (20th) had the highest average fitness, the minimum 

of the maximum displacement of this iteration was slightly 

lower than that of the 16th iteration. This indicates that 

the last iteration is not equivalent to the iteration with the 

optimal stacking sequence.

The optimization history of Test 2, using binary variables 

instead of real variables, is shown in Fig. 7. As shown in the 

figure, the average fitness also increased with an increase in 

iterations. There is also a drop in the maximum displacement 

history curve. However, the drop occurs later than that in 

Test 1. The use of binary variables instead of real variables, 

therefore, led to a slower convergence rate. In addition, the 

final optimization result obtained with binary variables is 

nearly the same as that with real variables, 3.4596 mm and 

3.4799 mm, as shown in Table 4.

Test 3 investigated the effect of the mutation probability. Fig. 5. Deformation of the panel at 0.1 ms after the impact.

Fig. 6. Optimization history of Test 1. Fig. 7. Optimization history of Test 2 (binary variables).
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The mutation probability is 25%, which indicates that three 

bits undergo the mutation (the number of bits assigned to a 

binary variable is 15, as a default in LS-OPT). However, the 

optimization result given in Table 4 shows that the mutation 

probability does not affect the results in at least these two 

tests. That is why the optimization history for Test 3 is not 

shown in this paper.

Test 4 also examines the influence of the number of discrete 

variables. The optimal result, which was obtained with a set 

of three discrete variables, 0, 45, and 90 degrees (Test 4), 

is quite similar to that obtained with a set of five values, as 

shown in Table 4. However, the average fitness decreases 

faster in Fig. 8. In addition, the optimal stacking sequence is 

obtained early in the first iterations. Many discrete variables 

result in a highly diverse population. However, a reduction 

in the number of discrete variables does not seem to affect 

the optimal result in this case. The multiple global optima 

might be a reason for this. There can be many global optima, 

and the combination of three discrete angles, 0, 45, and 90 

degrees, can also result in some of these optima. In addition, 

the model considered only two-dimensional elements of the 

composite panel and neglected the delamination problem, 

which is strongly related to the stacking of different angle 

plies. It is thought that if delamination is considered, the 

effects of the number of discrete variables can be shown 

more clearly.

An increase in the population size can improve the optimal 

solution. Figure 9 shows the optimization history with a 

Table 4. Optimization results

Test Method
Minimum of maximum 

displacement
Number of
evaluation

Optimal stacking sequences

1

GA

3.4596 1,022 [60/90/0/90/90/60/0/60/60/60/60/45/90/90/0/45/60/90/60]

2 3.4799 933 [60/90/60/90/90/45/45/60/90/60/90/45/90/90/90/60/0/60/60]

3 3.4799 933 [60/90/60/90/90/45/45/60/90/60/90/45/90/90/90/60/0/60/60]

4 3.4562 985 [0/45/45/0/90/0/0/0/45/0/45/0/45/0/45/45/90/45/90]

5 3.4399 1,751

[90/60/60/90/60/90/45/60/90/90/90/45/90/60/90/60/90/60/90]

[90/60/60/90/60/90/45/60/90/90/90/45/90/60/90/60/90/60/45]

[90/60/60/90/60/90/0/60/90/90/90/45/90/60/90/60/90/60/45]

6 SRSM 3.5197 310 [90/90/30/30/0/60/90/30/30/30/60/0/90/30/90/56/90/90/0]

GA: genetic algorithm, SRSM: sequential response surface method.

Fig. 8. Optimization history of Test 4. Fig. 9. Optimization history of Test 5 (population size = 100).

Table 3. Test cases with assigned parameters

Test Population size Binary/Real Crossover probability Mutation probability (bit) Set of discrete values Result

1 58 Real 1.00 1 0, 30, 45, 60, 90 Fig. 6

2 58 Binary 1.00 1 0, 30, 45, 60, 90 Fig. 7

3 58 Binary 1.00 3 0, 30, 45, 60, 90

4 58 Real 1.00 1 0, 45, 90 Fig. 8

5 100 Real 1.00 1 0, 30, 45, 60, 90 Fig. 9
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population size of 100. There is a jump in the backplane 

displacement at the 7th iteration, but the average fitness is 

still improved with the iteration. As shown in Table 4, the 

optimization result improves when the population size 

increased from 58 to 100. The minimum of the maximum 

displacement decreaseed by about 0.6%, reducing from 

3.4596 mm down to 3.4399 mm, but the number of finite 

element evaluations was nearly 1.7 times larger (increasing 

from 1,022 to 1,751). Obviously, an increase in the population 

size significantly increases the optimization cost. Different 

stacking sequences can give the best fitness. The optimal 

result of Test 5 was found with three different stacking 

sequences, given in Table 4. This suggests the possibility of 

multiple optima of the current optimization problem.

Test 6 was done with the application of the sequence 

response surface method instead of the genetic algorithm for 

comparison. As shown in Table 4, although the minimum of 

the maximum backplane displacement obtained is slightly 

larger than that obtained using the genetic algorithm, the 

number of fitness evaluations is much lower. Consequently, 

the SRSM could be a candidate in conceptual design to save 

time.

5. Conclusions

We used a genetic algorithm available in LS-OPT, a 

commercial program, to optimize the stacking sequence of 

composite laminates in order to minimize the backplane 

displacement when subjected to a high velocity impact. We 

used an explicit finite element package, LS DYNA, for the 

fitness evaluation in the algorithm. We performed several tests 

with different parameters in order to investigate the effect of 

population size, variable type, and mutation probability. We 

carried out an additional test with the sequential response 

surface method in LS-OPT for comparison.

The results show that the use of real variables in LS-

OPT can yield a higher convergence rate than the use of 

binary variables. An increase in population size improves 

the optimization result, but the analysis cost increased 

significantly. When the population size increased from 58 to 

100, the number of finite element evaluations increased by 

nearly 1.7 times, and the improvement was only 0.6% in the 

current study. An increase in the number of discrete variables 

from three to five values in this study does not make a large 

difference in the optimization results. The multiple optima 

characteristics of the problem and the lack of consideration 

of the delamination phenomenon in the current model may 

account for this result. Consequently, a three-dimensional 

analysis is recommended in future studies.
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