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Generalized One-Level Rotation Designs
with Finite Rotation Groups
Part II : Variance Formulas of Estimators |

KeeWhan Kim,'YouSung Park?

ABSTRACT

Rotation design is a sampling technique to reduce response burden and to
estimate the population characteristics varying in time. Park and Kim(1999)

discussed a generation of one-level rotation design which is called as »{* —

7'~ design has more applicable form than existing before. In the structure

of 7 — ! design, we derive the exact variances of generalized composite
estimators for level, change and aggregate level characteristics of interest,
and optimal coefficients minimizing their variances. Finally numerical ex-
amples are shown by the efficiency of alternative designs relative to widely
used 4 — 8 — 4 rotation design. This is continuous work of Part I studied by
Park and Kim(1999).

Key Words: Rotation sampling design; One-level rotation design; Generalized
composite estimator; Variance; Optimal weights; Efficiency.

1. Introduction

In a rotation sampling design, sample units have a restricted rotation group
life ; as they leave the rotation group, new units are added. Such rotation design
has been used in sample survey since the 1950’s(Hansen, 1955; Woodruff, 1963:
Rao and Graham, 1964; Cochran,1977; Wolter, 1979).

In one-level rotation design, some sample units in a rotation group drop out.
are replaced by other units in the same rotation group, and return again to that
sample later time(Hansen, 1955; Rao and Graham, 1964; Cantwell, 1990). This
type of design is used for the Canadian Labor Force Survey(LFS) conducted
by Statistics Canada, the Current Population Survey(CPS) at the U.S. Bureau
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of Census and the Labor Force Survey in Japan. The CPS is a representative
survey using one-level rotation design. Park and Kim(1999) proposed a rp—py!
design in the sense that once a final sampling unit is selected, it is interviewed for
consecutive ry survey periods, drop out for the next ry succeeding months, and
returns to the sample for another r; months; this process is repeated in m times
before the unit is out from sample completely. This design has more applicable
form than existing before.

(i) mr; rotation groups are required and there is a positive integer satisfving

ry = Iry,

(ii) the same number of final sampling units from each of mr; rotation groups
are selected so that mr; rotation groups are included in sample for each
survey month.

(iii) For any given survey month, mr; sets of final sampling units from mr,
rotation groups can be identified by their appearance time to sample from
the first time to the mrith time and hence mry sets of final sampling units
consist of monthly sample.

It is ensured by (iii) that the overlapping percentage between any two survey
periods in any number of r{* — 7‘;"_1 designs depend on only time lag. They also
provided an algorithm which automatically satisfies the above conditions.

The generalized composite estimator(GCE)(Breau and Ernst, 1983) is the most
efficient one among several composite estimators developed for rotation sampling.
Cantwell(1990) derived variances of GCE’s for some characteristics of interest in
his balanced rotation design. However variance formulas of Cantwell have a weak
point which is crucial since the variance formulas contain unknown coefficients.
Our findings are presented in the following four sections. Overlapping formula
reflecting from arrangement of rotation group is introduced in Section 2. This
formula plays an importance role in deriving the variance formulas of GCE’s.
In Section 3, the variance formulas of four type GCE’s are derived as explicit
forms in r* — r7*~! designs and optimal coefficients minimizing the variances of
GCE’s are derived. Finally, in Section 4 we investigate the efficiency of alternative
designs by comparing them to the usual 4-8-4 design which is being used in CPS.
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2. Overlapping Reflecting from Allocation

Following the definition of sample designation by Part I of this paper(Park nd

Kim’s, 1999), we derive another overlapping formula to be caused by arrangement
of rotation group. Although this formula gives the same result which was shown
in Part I of this paper, gives a clue to derive the variance of GCE. As defined in
Part I of this paper, Let P, be the ath panel consisting of mr, rotation groups
numbered by 1,2,--- ,mr;. We assume that these P, are well arranged by the
algorithm given in Part I of this paper. Figure 2.1 is one example constructed by
the algorithm.
In Figure 2.1, to determine the sample for the month t= Jun.Yearl = 6, the
necessary rotation groups are (678345678121 23) where the first 3 rotation
groups (6 7 8) come from Py, the next 8 rotation groups, (34567 81 2) from
P, and the last 3 rotation groups (12 3) from P3. Denote these 14 groups by a
position vector G5 = (67004500810023) for t = 6, and its elements are
indexed by r = 1,...,14. The rth element in gg is 0 if the rotation group in the
rth position is not in sample at t. Similarly, the position vector for the month
t + t*=Oct.Yearl = 101is G4* = (4500810023006 7) in which {458 1)
come from P, and (236 7) from P3;. Thus the 6 rotation groups (4 581) of P,
and (2 3) of P; appear both in G§ and gj,;f“. Hence we have an overlapping
between months t = 6 and ¢t = 10. Based on the position vector Ql‘g. define this
overlapping between months ¢ and ¢t 4 t* by a vector

Frep»=(00001100110011)

in which the rth element is 1 if the same group in the same panel occupies the
rth position in both position vectors and 0 otherwise. Similarly, one can see
Fiy =(11001100110011), t=Jun.Yearl=6. Since the 4 rotation groups
(4581) from P, and two (2 3) from P; are in both the month t=Jun.Yearl=6
and month t + t* = Oct.Yearl =10, the overlapping percentage between these
month is (6/8) x 100. Note that 6 is the number of positions with 1 in both
Fy: and Fitp4+. Therefore this 6 can be also obtained by, 6 = F} F; 4 =
(11001100110011)(00001100110011). It is easy to check that this
observation always holds for any t* > 0.
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Figure 2.1: 2% — 23 gystem.
Panels and rotation groups
P, P, P Py

YEARMONl2345678345678121234567834567812
Y1 JAN| o o o o o o o o
FEB o o c o o o o o
MAR, o o o o o o o o
APR o o ol o o o ol o
MAY o o o o o o o o
JUN o o o o o o o o
JUL o o o o o o o o
AUG o| o o o of o o o
SEP o o o o o o o o
OoCT o o o o o o o o
NOV o o o o o o o o
DEC o o o] o o o of o
Y2 JAN o o o o o o o o
FEB o o o o o o o o

With an appropriate rearrangement of rotation groups in P, as given in the
algoritm provided in Part I of this paper, any r — r7*~! design satisfying (i),
(ii) and (iii) has the same rotation pattern as 24 — 23 design in Figure 2.1( for
details, see Park and Kim, 1999). For any r}* — ri* ! design, we introduce the
backward shift matrix L' of dimension (mry+ (m = 1)) X (mry + (m = 1)ry)
with the (r,s)th element [,;, = lifr—s=t*and l,, =0if r — s # t* (Horn and
Johnson, 1985). Then it is easy to see that Fiiper = Lt'Ft,t. For example, the
overlapping percentage between month t and ¢t + t*, t* > 0 is simply

*

F, L' F,
8

where 8 = mr, is the number of rotation groups in 2¢ — 23 design.

x 100

The general statement of the overlapping between months t and t + =, t* >0
for the rT* — r;”"l design is presented as following: The rth element of F,, is 1 if
it is within the ranges from r = [(i = 1)(r; +r3) + 1] to r = [(i = 1)(r{ +12) + r]
if 1 <i< mand0if it is within the ranges from r = [ir; + (i — 1)ry + 1] to
r=[ir;4+(i—1)rg+r]if 1 <i < m—1. Using the backward shift matrix L' of
dimension (mry 4+ (m — 1)ry) X (mry + (m — 1)ry), the general overlapping rate
between the two samples at time ¢t and t + t* for t* > 0 is expressed by

t.
Fl Frayee  F,LUFyy

mnry mry

O(t,t") =

(2.1)

where F, 14+ = L F;. This relation Fiipee = LY F,; is valid only when mr,
rotation groups at any survey month are well ordered by their appearance time
to the sample for the Ist time to the mrth time from the right to the left.
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3. Generalized Composite Estimator(GCE)

The estimators from rotation sampling have been developed during the past
several decades with the fixed weights (Rao and Graham, 1965; Hansen, 1978;
Huang and Ernst, 1981; Kumar and Lee, 1983). The rotation groups are assumed
to be independent, and sampling units in a rotation group are also assumed to be
independent. Therefore, measurements from sampling units in different rotation
groups or panels are independent. But the measurements from the same sampling
units in any two different survey months are related with a correlation structure.
As we used the models to obtain parameters, we do not specify the sampling
design except that it is a probability measure on the set of all possible samples.

Let &y (a(i),y(s)) be an estimator of a characteristic of interest in which the
estimator is measured on the sampling units which appears to the sample for
the ith time at month ¢ where v(z) denotes the rotation group providing the
sampling units and «a(z) is the panel P,(; containing y(i). Hence &, (a(i)()):
t=1,2,---,mry are independent since all rotation groups at a fixed time t are
different, and 2 (a(i)y(i)) and Tes (a(iryy(i1))s T F# 7 are correlated only if a(i) =
a(i’) and (i) = v(?') since that two measurements, &y (a(i)(:)) a0d L (a (i)~ (7))-
are measured from the same rotation group and panel implies that they are
measured from the same sampling units; otherwise independent. Since once a
sampling unit appearing in the sample for the ith time at time ¢t is determined,
{ee(?),7(?)) is uniquely determined by allocation algorithm given Part I of this
paper, we use x;; instead of Ty (4(;)~(;)) for notational simplicity. Since we have
mry sets of sampling units in the ri* — 7‘.’2"‘1 design for any survey month as
discussed by Park and Kim(1999), we can define the GCE y; for a characteristic
X of interest at month t as

mr, mr)
Y = g A;Tg; — W E biri_yi+wyi) (3.1)
=1 =1

where the weight w is bounded as 0 < w < 1. The other weights ¢;’s and b;’s
may take any value subject to D72 a; = Y0} b; = 1. As we expect, the GCE
becomes to be simple estimator if w = 0, where the overlapping and previous
measurement at month t — 1 are ignored.

3.1. Variance

We assume there exist at least first two moments so that the expectation
E(z;) = w for all 7, and a common variance Var(z;;) = o? for all t and . The
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estimator y; is an unbiased estimator of yu; since y; converges in mean square.
However y; may not be unbiased when a rotation group bias is presented(Bailar,
1975 ;Kumar and Lee ,1983; Breau and Ernst, 1983). Thus we assume in this
paper that such a bias is not exposed. Further, from the above discussion we

assume the following covariance between w;; and zp for t,t' = 1,2,..., and
i, =1,...,mry as
o? ift=¢, a(i) = a(i’) and v{z) = y(¢')
Cov(xy, Tpir) = po? it # 1, (i) = a(i') and (i) = v(i) (3.2)

0 otherwise

where the subscript in py is tt’ = |t — /| so that the covariance is stationary.

Consider Cov(}_ 1ol a2y, D ey bireoys i), for t* > 1in ri" — r;""l design.
Let A4;;+ be the set of (z;; and z,_4 ;s)’s for 1, i =1,2,...,mry with a(i) = a(?)
and v(i) = v(¢’). Then by (3.2)

mry mry mry mry
COU( E A; Tty 5 bll‘t t*, I) —pt*(T E E ay b ILL 4[ [*)
=1 =1 =1

where I; ;{Apgx) = 1 if (244, %—y=i) € Ay and 0 otherwise, and po = 1.
This 770 SO0 abid; v (Agge) can be found similarly with a modified Fy, as

=1
discussed in Sectlon 2. Denote the vector a; = (@i s %ir;—11--- (t~1)r1+1)/*
bir = (biry s birr =1y -+ s Br_1)r 41) and Op, be 7y X1 null vector. Let
_ ’ ’ YA
ao = Latt — (alv 012’ a27 01‘27 T am) and
— ! ! ! 7 !
bo == Fb,f—f",f—l" = (b1707‘2‘b2‘07'27 ‘,brn)

where Fy ¢ and Fy = ¢—¢» has the same interpretation as in Fy; except that the
element with 1’s in F;; are replaced by a;’s for Fy ¢, and by b;’s for Fy g gv 1=
Since Fpt_t» t—¢» Will be Fpytor = Lt‘Fb‘t_tﬂyt_t' after t* month later, and
Ay ¢+ 1s defined by the set of the positions with nonzero in both Fy ¢ and Fp ¢t ¢,
the term Y 727 ST agby I i (A ) s simply F(;ML"Fb,t_,-,t_“. Therefore,

mry mry ,
a® t*1,0
COU( E Qi1 E bii—te z’) = pir0 Fa”L sz tht—t* = Pt'U L'b

/=1

(3.3)
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The p-0?L!" in (3.3) contains also the covariances not occurred between time ¢
and t —t*. These meaningless terms are purged out by 0,,’s in a®, b®. We reform
(3.3) without meaningless terms as follows

prr0?a® L'b® = p.o?a’RLYR’b (3.4)

where a = (a},al, -+ ,a},) and b = (b{, b}, .-+, b} ) have the size my; x 1 and
R is a mry x (mry + (m — 1)ry) matrix with the (¢, j)th element, (R);; = 1 if
J—i=(k—1)ry where (k~-1)r1+1<i<hkrifork=1,2,...,m;and (R);; =0,
otherwise. This R matrix removes irrelevant rows of L'" corresponding 0,,’s in
a® by premultiplying RLY". Similarly, L*" R’ eliminates irrelevant columns of L’
corresponding 0,,’s in b°.

Using the above equation, right side of (3.4), we obtain the variances of y; and
yr — yr_t+ as follows:

—
tion 1 and 1s constructed by the allocation algorithm given in Part I. Then using

Theorem 3.1. Suppose that a r" U design satisfies the conditions in Sec-

the covariance structure (3.2),

2

Var(y) = - < [a' (1 + 2Q1>a N (1 n 2Q1>b - 2a’(w2I +u2Q + Q1>b]
Var(ye — ye—e-) = 2(1 - wl.)V‘”'(yt)

. 1- wt. * * . *! . *
- 202( = ) [a'Q,.YUa ~a(Qp,+ WPQi )b+ wzb’Q,.,Ub}

where the Ly, xmr, 18 an identity matriz, T = mry+(m—1)ry, 1 <t < T -1,
and Q; = 3 ' wipL?, i =012, . T—1withl’ =T and

T-1

. W e~ (] i+q i+q 1
Q A’.q: ]-wk 4 F——l w Pl,i+qL + w_}:"*‘l Z

i=k+14q

q;ipl_,-L"} (3.5)

Often of primary importance are the aggregate level and level change over a
certain length of time(Cantwell,1990 ; Fuller, 1990). Denote by Si* the sum of
the GCE’s and S ~ S ,., a > t* the sum change of the GCE’s as

St = Y+ yi-1+ -t Y—atl
S¢ = Sy Ut + Yty + F Ytmatl = Yi—te + Yooto—1 + -+ Yt—te—at1)-
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Theorem 3.2. Under the same assumption given in Theorem 3.1,

—

o—

Var(Sta) = a2Va7‘(yt) - (o = )War(ys — yi—;)
7=1
a—1 a—1
V‘”'(Sta - ta—t‘) = Z (@ = 1i)WVar(ys — ye—to4;) — QZ Var(ys — yi—y)
j=—a+1 7=1

The proofs of Theorem 3.1 and 3.2 are given in the Appendix.

3.2. Optimal coefficients a and b

The Var(y:;) and Var(ye — ye—¢+) depend on coefficients or weights a;. a,

s Qmryy b1, b2, -+ by, as well as w and py where the indices in a; and b;
indicate the corresponding visiting time to sample at a survey month t. Previously
the composite estimators are shown with fixed weights (Cantwell, 1990: Breau
and Ernst, 1983). Since Var{y,) is a special case of Var(S®) when we put
a =1, and Var(y, — yi—s+) is also obtained from Var(S8 — S° ,.) with a = 1,
we only show the optimum weights of @;'s and b;’s, in the estimator by minimizing
respective variances of Var(Sy) and Var(Sy—S5;,.). Let A; and A, be Lagrange
multipliers. In the terms of variances and Lagrange multipliers, we set the object
function Op for the variance of S to be minimized, and O, for the variance of
Sg — S¢ 4+ to be minimized

01 = VCIT’(S;X) —2/\1(1'a—1)—2/\2(1'b—1),
02 = VGT(S? - ?—t*) - 2)\1(1/3* — ].) - 2)\2(1/b* — 1)

1 of the size (mry x 1) is unit vector. The scalar (1'a — 1) and (1'b — 1) from
the constraints of Y .} a; = 1 and "} b; = 1, and matrices (1'a™ — 1) and
(1’b™ — 1) from the constraints of >~/ af =1 and > .o br = 1.

The two variances, Var(S;) and Var(Sg — S7,+), in Theorem 3.2 can be com-

pressed as

Var(Sy) = > |:a'me1a +a'Qmab + b'meab} and

Var(Sy — Si ) =

2 ' 4 *! * .
1 2 I:a* Qc12" +a" Qc2b™ +b" Qe 3b ] . respectively,
— W
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where Qm, = (wc(l+ 2Qu) +23 0 (e -1 —w )Q;,())»

in,g:—'Z(wC(sz-{»Q]—}—w?Q Z—:a——J 1—w (Q“—%—.u QJ_1>)

—_ 2 — — o
Qm,3 = WQQm.l- Where We = a(l zw(l o ) dnd
(1 —w)?

-1 x—1

Q.. 2( Z (o = [51)( 1—-wt ~J (I+2Q1—Q¢ ﬁJO)—‘zZ a—] (l*w <I+2Q1 _Q10>

j=—(a—1) J=1

a--1

Q. = ( C Y (- D - (2T Q4R = Qi -7 Q)

j=—(a-1)
+23 (o - il - ) (2’ T+ Q +7Q) - Q). ~w2Q;,’_1)>.
Qc,3 = W2Qc.l

Define A = G(JG — I). For O, where G = (Qm,1 + Q'm‘l)—l and J = 117,
Using above expressions, it can be shown that the optimal coefficients of a and
b are given by

~ 1 P

a = [I- ;)_'ZAmezAQm,Z] I+ AQm-]G1 (3.6)

- 1 R

b = —AQ.3+GL. (3.7)
w

Similarly, from Og, the optimal coefficients of a* and b* for Var(Sy — 57',.)
can be obtained from a and b by replacing Qm.1. Qm.z2. and Qm 3 with Qc1.
Qc2, and Q¢ 3, respectively. The process is rather too complex to digest. and
the example below may help to see the logics of the results.

Example 3.1. Table 3.1 shows the optlmal coefficients for the 32— 91 design.
The optimal coefficients @ = (@1, @z, ... ,@s) and b = (b1 bz. o bb) for the
variance Var(y;), and @ = (a},a3,. .. ,aﬁ) and b* = (b*,b* b’:) for the
variance Var(y, — yi—1) are obtained by the formulas (3.6) and ( 7). These
coefficients are calculated under two correlation structures along with a fixed
w =0.5and p = 0.5,0.7,0.9: the first is the exponential correlation py = plt=tl
and the second is the arithmetic correlation py = p+(1— |t —#'[) x 0.01. These
correlations are applied to (3 2) to obtain the coefficients or we1ght< in the Table
3.1. The weights @; and @} are the coefficients of x,; and bi and b* are the

coefficients of x;_; ;. The coefficients of a, a* b b* depend on the overlapping

)
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Table 3.1: Weights for 3% — 9! design under two correlation patterns with fixed w = 0.5

GCE weights exponential correlation arithmetic correlation
0.5 0.7 0.9 0.5 0.7 0.9

a) 0.15625 0.14115 0.11044 0.15225 0.13490 0.10573

as 0.17188 0.17943 0.19480 0.17642 0.18771 0.20589

as 0.17188 0.17943 0.19480 0.17137 0.17747 0.18852

as 0.15625 0.14114 0.11037 0.15221 0.13482 0.10556

as 0.17188 0.17943 0.19480 0.17640 0.18768 0.20534

Yt ag 0.17188 0.17943 0.19480 0.17134 0.17742 0.18846
b 0.21875 0.25052 0.29790 0.24893 0.28579 0.32831

by 0.21875 0.25052 0.29790 0.20554 0.23496 0.27982

by 0.06250 -0.00103 -0.09570 0.04576 -0.02044 -0.10779

by 0.21875 0.25052 0.29790 0.24889 0.28572 0.32822

bs 0.21875 0.25052 0.29790 0.20543 0.23483 0.27969

be 0.06250 -0.00105 -0.09589 0.04546 -0.02085 -0.10825

ay 0.11229 0.08924 0.06758 0.11996 0.09695 0.07118

as 0.19276 0.20580 0.21929 0.18751 0.19865 0.21185

as 0.19495 0.20495 0.21313 0.19255 0.20441 0.21696

a; 0.11229 0.08925 0.06762 0.11997 0.09698 0.07124

as 0.19276 0.20580 0.21928 0.18750 0.19863 0.21185

Yo — Y1 ag 0.19495 0.20495 0.21310 0.19251 0.20437 0.21692
by 0.25101 0.28085 0.30644 0.23015 0.25762 0.28799

b5 0.22811 0.25610 0.28433 0.23514 0.26503 0.29597

b3 0.02088 -0.03694 -0.09076 0.03460 -0.02277 -0.08404

b; 0.25101 0.28084 0.30639 0.23016 0.25762 0.28795

b3 0.22811 0.25609 0.28430 0.23519 0.26508 0.29598

be 0.02088 -0.03694 -0.09070 0.03476 -0.02258 -0.083%5

between months ¢ and ¢ — 1. The coefficients 1)3, bg, b and bg are small or
even negative, and the coefficients bl, bl, © # 3 or 6 are relatively large for fixed
p- The reason is that the measurements x;_; 3 and z;_, 6, corresponding to the
coeflicients b3, 66, b and bG, will be rotated out at month ¢; hence. they are not in
the sample at month ¢. But the measurement x,_;, for i # 3 or 6, corresponding
to the coefficients bz, b , are in the sample at month ¢. Similarly, corresponding
to a and a*, the measurements Z¢1 and 24, are in the sample at month #, but
not in the sample at month ¢ — 1. Therefore, the coefficients a;, a4, @}, a} are
relatively smaller than other coefficients @; and a7, 7 # 1 or 4. Since Y — Y1
depends on the overlapping between months tand t — 1 more than L y; does for
each fixed p, the optimal coefficients b < b fori = = 3,6, while b* > b; for
t=1,2,4,5 and @y <@, fori =1,4 and @ > @; fori = 2.3,5,6. It appears
that the coeflicients increase with the overlapping and increasing correlation p,
while they decrease with no overlapping and increasing p. The coefficients with
overlapping under the arithmetic correlation are larger than those coefficients
under the exponential correlation; on the other hand, the coefficients without
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overlapping under the arithmetic correlation are smaller than those under the
exponential correlation. Generally, it is true for most of the r* — 7';""'1 designs.

4. Design Efficiency

The efficiency of an alternative design is defined by the ratio of the two vari-
ances, one for an estimate from the alternative design and the other from the
standard 4% — 8' design, and it measures the comparative efficiency of the alter-
native designs. Tables 3, 4, 5, and 6 show the design efficiency of 14 alternative
designs for the estimate y,; of the month t, the difference y; —y,; for the monthly
change, S? of quarter sum, and S — S2_|, of yearly change for quarter sum, re-
spectively. Computing the efficiency of an alternative design only requires the
variance formula of GCE, we assume several simplifying conditions for this ex-
ample. r;,; = Z:il Tii s/nc where the measurement z;;, is of the sth unit in
ry; of size ny;, and n;; = n. for simplicity of calculation. We also assume the
covariance below between z,;, and zy 4 equals to o2p"l when s = & and
these two z’s are from the same rotation group and panel. And hence

= pt=t'1if (i) = a(i’) and y(i) = 1(i)

Cov(ay;,xp i) = )
0 otherwise

Table 4.1: Efficiency of alternative design compared to 4° — 8! design for y, with equal sample
size under exponential correlation(optimum value of w)

Designs p
0.5 0.6 0.7 0.8 0.9

- 10° 0.9830(0.3) 0.9744(0.3) 0.9624(0.4) 0.9463(0.5) 0.9157(0.6)
S 0.9831(0.3 0.9745 0.3{ 0,9636§0.4§ 0.9527(0.5 0.9449(0.6)
24— 93 09843%0.2 0.9788(0.2 0.9746(0.3 0.9802(0.3 1.0176(0.5)
2t - 4? 0.9831(0.3) 0.9745(0.3 0.9637(0.4) 0.9535(0.5) 0.9489(0.6)
2% — 2t 0.9844(0.2) 0.9789%0.2 0.975220‘3% 0.9814(0.3) 1. 02;0(0 1)
20— 9° 0.9845(0.2) 0.9790(0.2) 0.9757(0.3 0.9822(0.3) | 0259(0.4)
3% —g! 0.9905(0,3% 0.9853(0.4) 0.9782(0.5) 0.9684(0.6) 0.9488(0.7)
33 32 0.9908(0.3 0.9870(0.4) 0.9849(0.4) 0.9893(0.5) 1.0211(0.6)
- 38 0.9909(0.3 0.9872(0. 4§ 0.9854(0.4) 0.9914(0.5) 1.0202(0.6)
5~ -5t 1.0079(0.4 1.0121(0.5 1.0189(0.6) 1.0322(0.6) 1.0653(0.7)
5 — 101 1.0078(0.4 1.0119(0.5) 1.0175(0.6) 1.0261(0.7) 1.0378(0.8)
6% - 6' 1.0141(0.4 1.0216 0.5% 1.03‘25(0‘62 1.0518(0.7) 1.0936(0.8)
7?7 1.0190(0.4 1.0204(0.5 1.0442(0.6 1.0682(0.7) 1.1150{0.8)
82 — 9‘ 1.0230(0.4) 1.0358(0.5) 1.0542(0.6) 1.0829(0.7) 1.1355(0.8)

The variances in Theorem 3.1 and 3.2 with the optimum coeflicients of (3.6) and
(3.7) are now considered as a function of only w and p. The w takes a value which
minimizes the variances for each design as shown in the parenthesis in the tables
below, and ranges from 0.1 to 0.9 with the increment of 0.1. The correlation p
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takes the values p = 0.5,0.6,0.7,0.8, or 0.9. The values in each Table provide
the efficiency of alternative designs with the same sample size for both alternative
and 42 — 8! designs.

For example, 24 units are the size of the sample for both of 3% — 9! and
4% — 8" designs. That is, n, = 4 for 32 — 9' design and n. = 3 for 4* — §!
design. Smaller value than 1 implies that the alternative design is more efficient
than 4% — 8' design for the given optimal w and correlation.

Table 4.2: Efficiency of alternative design compared to 4> — 8' design for y, ~ y:—1 with equal
sample size under exponential correlation(optimum value of w)

Designs p
0.5 0.6 0.7 0.8 0.9

22— 10 1.1586(0. 6; 1.2036(0. 6{ 1. 2556}0 7 1.3163(0.8) 1.3955(0.9)
28— 42 1.1584(0.6 1.2030(0.6 1.2542(0.7) 1.3144(0.8) 1.3946(0.9)
2t - 2? 1.1559$0.5) 1.1983 0.6 1.2476(0.6 1.3048%0.7 1.3848(0.8)
20— 4P 1.1584(0.6) 1.2029 0.6 1.254050.7 1.3142 0.8§ 1.3943(0.9)
25— 2! 1.1557(0.5) 1.1979(0.6 1.2467(0.6 1.3036(0.7 1.3826(0.8)
26— 9° 1.1556(0.5) 1. 1977(0 6% 1.2462(0.6) 1.3028(0.7 1.3811(0.8)
32— 9! 1.0469(0.6) 1.0586(0.7 1.0721(0.8) 1.0858(0.8{ 1.1031(0.9)
3P~ 3 1.0464(0.6) 1.0577(0.7) 1.0706(0.7) 1.0830(0.8) 1.1018(0.9)
3t -3 1.0463(0.6) 1.0576%0 7) 1.0703(0.7) 1.0827(0.8) 1.1015(0.9)
52 — 5! 0.9742(0.6 0.9683(0.7) 0.9618(0.8) 0.9544(0.9) 0.9471(0.9)
52 — 10! 0.9742 0.6% 0.9684%0 7) 0.9619(0.8) 0.9542(0.9) 0.9475(0.9)
62 — 6' 0.9578(0.6) 0.9486(0.7) 0.9384(0.8) 0.9264(0.9) 0.9153(0.9)
7?7 0. 946520 7% 0.9350(0.7) 09224&0.8) 0.9076(0.9) 0.8940(0.9)
8% — g 0.9382(0.7 0.9251(0.7) 0.9109(0.8) 0.8941(0.9) 0.8787(0.9)

Table 4.1 shows the relative efficiency of the 14 alternative designs at time
t for the 5 correlation coefficients and optimal w’s in the parentheses. The 5
correlations between x;,; and x¢_; from same sampling units range from 0.5
to 0.9 as shown in the first row. For the correlation from 0.5 to 0.8, the first
9 alternative designs are more efficient than the 4> — 8' design, while the last
5 designs are less efficient. For the correlation 0.9, the 4 alternative designs are
more efficient, but the remaining 10 are less efficient than the standard 4% — §'
design. Table 4.2 shows the efficiency of the 14 alternative designs for the monthly
changes. The last 5 alternative designs from 5% — 5! to 8% — 8! are consistently
better than standard design for all ranges of correlations, while the upper 9
designs are worse. For the monthly change with fixed p, the designs with a smaller
overlapping from one month to the next have larger variance, while those with
a larger overlapping have smaller variance. Table 4.3 shows the efficiency of the
alternative designs for the quarter changes. The designs, 2493 25924 269°
and those from 5% —5! to 82 —8! are more efficient than the 42 —8' design. Again,
this happens because the variance of quarter change becomes smaller when the
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Table 4.3: Efficiency of alternative design compared to 4> — 8! design for y. — y:—3 with equal
sample size under exponential correlation(optimum value of w)

Designs o
0.5 0.6 0.7 0.8 0.9

22 — 10! 1.0150(0.6) 1.0368(0.7) 1.0731(0.7) 1.1366(0.8) 1.2548(0.9)
242 1.0139(0.6) 1.0342(0.7) 1.0659(0.7) 1.1226(0.7) 1.2261(0.8)
PR 0.9754(0.5) 0.9709(0.6) 0.9728(0.6) 0.9961(0.6) 1.0849(0.7)
2t 43 1.0138(0.6) 1.0339(0.6) 1.0649(0.7) 1.1199(0.7) 1.2205(0.8)
20 — 9 0.9727(0.5) 0.9666(0.6) 0.9660(0.6) 0.9848(0.6) 1.0657(0.7)
20— 2 0.9709(0.5) 0.9636(0.5) 0.9616(0.6) 0.9774(0.6) 1.0521(0.6)
32 _ 9! 1.0058(0.6) 1.0133(0.6) 1.0245(0.7) 1.0¢ 143(0 8) 1.0773(0.9)
3% 32 1.0012(0.5) 1.0030(0.5) 1.0032(0.6) 1.0069(0.6) 1.0289(0.7)
R 1.0006(0.5) 1.0013(0.5) 1.0001(0.6) 0.9987(0.6) 1.0096{0.6)
5% — 5! 0.9975(0.6) 0.9931(0.7) 0.9858(0. 8% 0.9758(0.8) 0.9617(0.9)
52 —10' 0.9976(0.6) 0.9937(0.7) 0.9869(0.8 0.9797(0.8) 0.9644(0.9)
62 — ¢ o 9965(0 6) 0.9903(0.7) 0.9797(0.8) 0.9653(0.8) 0.9416(0.9)
77 0.9958(0.6) 0.9881(0.7) 0.9748(0.8) 0.9576(0.9) 0.9272(0.9)
g2 — & 0.9953(0.6) 0.9866(0.7) 0.9714(0.8) 0.9506{0.9) 0.9172(0.9)

percent of overlapping between months ¢ and ¢ — 3 becomes larger. In Table 4.4.

from 22 — 10! to 3! — 33 show better efficiency than 42 — 8'. As seen in Theorem

3.2, Var(S,s) increases when Cov(yy, yi—1) and Cov(y, y—2) increase. Hence

the designs having bigger overlapping percentage between t and t — 1, t — 2 like
2 51 to 82 — 8! are less efficient, than 4% — 8'.

Table 4.4: Efficiency of alternative design compared to 4?7 — 8! design for Sis with equal
sample size under exponential correlation({optimum value of w)

Designs P
0.5 0.6 0.7 0.3 0.9

22 — 10! 0.8527(0.3) 0.8300(0.4) ()8112(0 4) 0.7962(0.5) 0.7834(0.6)
22— 4 0.8527(0.3) 0.8316(0.3) 0.8148(0.4) 0.8082(0.4) 0.8256(0.5)
2t 9® 0.8633(0.3) 0.8517(0.3) 0.8518(0.4) 0.8697(0.5) 0.9062(0.8)
24— 43 0.8529%0.3) 0.8316{0.3) 0.8153(0.4) 0.8094(0.4) 0.8298{0.5)
25 2t 0.8644(0.2) 0.8534(0.3) 0.8547(0.3) 0.8768(0.5) 0.9253(0.8)
2% — 98 0.8646(0.2) 0.8546(0.3) 0.8570(0.3) 0.8815(0.4) 0.9399(0.8)
32 -9 0‘9436(0.3; 0.9330(0.3) 0.9224(0.4) 0.9126(0.5) 0.9018(0.7)
3 - 3 0.9458(0.2 0.9371(0.2) 0.9343(0.2) 0.9458(0.3) 1.0003(0.4)
338 0.9453(0.2) 0.9371(0.2) 0.9348(0.2) 0.9478(0.2) 1.0077(0.3)
57 — 5! 1.0374(0.4; 1.0463(0.5) 1.0563(0.5) 1.0723(0.6) 1.1061{0.7)
52 — 10" 1.0374(0.4 1.0463(0.5) 1.0547(0.6) 1.0633(0.7) 1.0691(0.7)
62 — 6! 1.0647(0.4) 1.0799(0.5) 1.0970(0.6) 1.1185{0.6) 1.1553(0.7)
77 1.0858(0.4) 1.1064(0.5) 1.1282(0. 6% 1.1560(0.7) 1.1991(0.8)
82 — 8! 1.1014(0.4) 1.1265(0.5) 1.1545(0.6 1.1875(0.7) 1.2333(0.8)

Table 4.5 shows the efficiency of the alternative designs for the yearly change
of quarter sum. The same pattern persists as seen in Table 4.4. the covariance

(4]

betwen S® and S? ,. contributes to the reduction of the Var(S; — 57 ,.) and it
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Table 4.5: Efficiency of alternative design compared to 4> — 8' design for $? — S%_,, with
equal sample size under exponential correlation{optimum value of w)

Designs p
0.5 0.6 0.7 0.8 0.9

22 — 10! 0.8527(0.3) 0.8304(0.4) 0.8126(0.4) 0.8030(0.5) 0.8154(0.6)
28 — 42 0.8530(0.3 0.8319(0.3 0.8175(0.4 0.8214(0.4 0.8800(0.6)
2¢ 98 0.8634(0.3 0.8522(0.3 0. 8544%0 4 0.8780 0.7% 0.8967(0.9)
2t 48 0.8530(0.3 0.8317(0.3 0.8160(0.4 0.8133(0.4 0.8469}0.5)
25— 9! 0.864150.2; 0.8535 0.3; 0.8558(0. 3; 0.8793(0.6) 0.8911(0.9)
25 28 0.8645(0.2 0.8543(0.3 0. 8565%0 3 04878850.5) 0.8882(0.9)
32 -9 0.9437(0.3 0.9331(0.3) 0.9239(0.4 0.9202(0.6) 0.9282(0.7)
3 -3 0.9451(0.2 0.9374(0.2; 0.9369(0. 3; 0.9584(0.3) 1.0326(0.9)
33 0.9452(0.2 0.9373(0.2 0.9356(0.2) 0.9502(0.3) 1.0147(0.5)
57 — 5! 1.0377(0.4) 1.0464(0.5) 1.0575(0.6) 1.0771(0.7) 1.1072(0.9)
52 — 10! 1.0377(0.4) 1.0463(0.5) 1. 0560%0 7) 1.0642(0.8) 1.0721(0.9)
62 — 6 1.0647’(0.4% 1.0796(0.5) 1.0952(0.6) 1.1108(0.8) 1.1165(0.9)
727 1.0853(0.4 1.1056%0.6) 1 1258%0.7) 1.1442(0.8) 1.1503(0.9)
87 — 8! 1.1013(0.4) 1.1261(0.6) 1.1515(0.7) 1.1747(0.8) 1.1832(0.9)

depends on the cumulative percent of overlapping between tandt—t",1 < ¢/ < ¢*
as well as w''. As the time lag ¢* increases. the w!" decrease rapidly, and thus,
Cov(S7, St“_t.) becomes negligible. This explains Table 4.5. Because so many
factors are involved in these examples, it is difficult to choose one superior design
based only on the efficiency. The choice of design depends on which estimator
meets our needs. As a rule of thumb, we choose ry,r, and m which make less
overlapping between months to have reliable measures of level and aggregate
level, whereas for reliable measure of change’s we choose r1,79 and m making
much overlapping between months.
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Appendix A: Proof of Theorem 3.1

Observe that

mry mry
Var(y,) = Var(Za,-zm) +w2Var<Z b,-xt_ly,) +wVar (yt_1>
i=1 i=1

mry
— 2wCov < Z aily;, Z bil't—l,i) + 2wCov ( z QiTeiyYr— 1>
i=1 i=1 =1
mry
_ 2w2(]ov(Zbixt_1,iy yc-1>
i=1

By (3.4)

(1 —w))Var(y) =o° (a’a + w?b’'b — 2w (pla'RLR'b>>

+ QwCov(Z Tt yg_l) — QwCOU(Z bixe—1,i yt_l) (A.1)
1=1 1=1

On the other hand, observe that

Var(ye — Ye—te) = 2Var(y.) — 2Cov(yr, Ytt*)

t*—1 mry
= 2Var(y:) — 2[ Z {wkCov(Zaixt_kyi, yt_t.>
i=1

k=0
mry
- wkHCOU(Z biZi_1-kis yt-r)} + Wz. Var(y_ )] (A-Q)
1=1

where the second term is derived by recursively solving (3.1) as
t*—1 mry t*-1 mry

k k+1 t*
Y = E w E Qi Tt ki E Wkt E bizi_1—ki+w Yot
k=0 =1 k=0 i=1

For any coefficient ¢;’s, 0 < k* < t* —1and to > 1,

mry
COU( E Cixt—k‘,i’yt——tg) (AJ)
i=1
mr, oo mry mry
] 141
:COU( E CiTekv iy E (wj _5_ aii_rg—ji— Wt E biﬂft—zo—x—j,z))

=1 7=0 i=1 i=1

Since there is no overlapping between z; and ., if It — to| > T by the overlapping
formula (2.1) given in Section 2, Cov(xy i, Lee,ir) = 0 when |t —to| > T for any 1" =
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1,2,--+-,mry. Hence (A.3) is reduced as

mry T—14+k"~tq mry T—24+k"—tg mr,
; y ) J o . j+1 .
Cov( E CiTy_ ke i, E w § ;& _yo—ji — E w’ E biJ»t—tg—l—j.z)-
i=1 =0 i=1 i=1

=0
By (3.4), this covariance can be rewritten as

T—1+k"—to T—24k"—to
02( D@ projknRLOHTE R =y Tt oy e/ RLETHIE R’b)

j=0 =0
— 0_2 (wk‘—toc/Qto—k‘a ‘_ wk.—[nc/QtO-{-l—k‘b) (A:l)

where ¢ is the same form of a or b given in (3.4). Set o0 = 1 in (A.4). Then we have
the desired Var(y:) by substituting the result (A.4) into the second and the third terms
of (A.1) with ¢ replaced by a and b, and &* replaced 0 and 1, respectively. Plugging
to =t*, k* = k and ¢ = a in (A.4) for the first covariance of (A.2) produces

t* -1
0’2 Z (w%"t a/Qg‘_ka_MZk_c atht,k+1b) (AB)
k=0
For simplicity and efficiency in computation, by {3.5), (A.5) has the matrix form as

.
gl —w

. (a’Q’;.,Oa - a’Q;‘.,lb>

1—-w

Similarly, plugging tp = t*, k* = k — 1 and ¢ = b in (A.4) for the second covariance of
(A.2) and following the same fashion, we get the second result in Theorem 3.1.

Appendix B: Proof of Theorem 3.2

Var(Sy) = Var(ye+ -1+ -2+ + Yi—as1)
a—1 a—2 a—1
= ZVGT(yz-i) -’r‘QZ Z Cov(Yi—i, Yo—ir)
1=0 1=0 i'=i+1

a~1

= aVar(y)+2

™

(a = j)Cov(ys, ye—j)

=1
a—1
= aVar(y)+ Z(a =J) ('ZVar(yz) —~ Var(y: — ’.Ut—.i))
=1
Ja-l
= o*Var(y) ~ Y (o —)Var(y — ve—j).

i

J=1
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Var(Sy — S; ) = Var(ye+ -4 Yroat1 = Wrore + -+ Yiotr—at1))

a—1 a—2 a-—1
Z (Var(ye_i) + Var(yz-:-_i)) +2[Z Z (C'ou(yzq,yt—i')

il

1=0 i=0 {'=i+4+1
a-1la=-1
+ Cov(yr—r+ -1, yz-r—w)> - Z Z Cov(ye-i, yz_z--w)]
1=0 /=0

= 2aVar(y) +Z[ 7ch (ye) — Var(ys — ye— J)}

- {2Var(yt) —Var(y, — yr—te4j } —{)1 ar{y:) — Var(y — y— ,._,)}]

— oz{QVar(yg) —Var(y — yt_,.)}
a-1

=aVar(ys — ye—e-) + Z(O - J) [V“r(yc — Ye—to4j)
i=1

+Var(ye — ye—ee—y) — 2Var(y — yt-j)}

a—1 a—1

= > (a—liDVar(y — ye—tet;) =2 Var(y. — vi-))
j=—a+l Jj=1
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