This paper propose the method of constructing the highly efficiency adder and multiplier systems over finite fie2, degree of uk terms, therefore we decrease k into m-1 degree using irreducible primitive polynomial. We propose two method of control signal generation for perform above decrease process. One method is the combinational logic expression and the other method is universal signal generation. The proposed method of constructing the highly adder/multiplier systems is as following. First of all, we obtain algorithms for addition and multiplication arithmetic operation based on the mathematical properties over finite fields, next we construct basic cell of A-cell and M-cell using T-gate and modP cyclic gate. Finally we construct adder module and multiplier module over finite fields after synthesize ${\alpha}$$\^$k/ generation module and control signal CSt generation module with A-cell and M-cell. Then, we propose the future research and prospects.
As an analogy of $Poincar{\acute{e}}$ series in the space of modular forms, T. Ono associated a module $M_c/P_c$ for ${\gamma}=[c]{\in}H^1(G,R^{\times})$ where finite group G is acting on a ring R. $M_c/P_c$ is regarded as the 0-dimensional twisted Tate cohomology ${\hat{H}}^0(G,R^+)_{\gamma}$. In the case that G is the Galois group of a Galois extension K of a number field k and R is the ring of integers of K, the vanishing properties of $M_c/P_c$ are related to the ramification of K/k. We generalize this to arbitrary n-dimensional twisted cohomology of the ring of integers and obtain the extended version of theorems. Moreover, some explicit examples on quadratic and biquadratic number fields are given.
Journal of the Korean Institute of Telematics and Electronics
/
v.25
no.5
/
pp.528-535
/
1988
This paper presents a constructing theory of variable arithmetic operation systems for computing multiplications and multiplicative inverse in GF(2**m) based on a modulo operation of degree on elements in Galois fields. The proposed multiplier is composed of a zero element control part, input element conversion part, inversion circuit, and output element conversion part. These systems can reduce reasonable circuit areas due to the common use of input/output element converison parts, and the PLA and module structure provice a variable property capable of convertible uses as arithmetic operation systems over different finite fields. This type of designs gives simple, regular, expandable, and concurrent properties suitable for VLSI implementation. Expecially, the multiplicative inverse circuit proposed here is expected to offer a characteristics of the high operation speed than conventional method.
Let K be a finite cyclic extension of $k=\mathbb{F}_q(T)$ of prime degree ${\ell}$. Let ${\tilde{\mathcal{C}}}l_{K,{\ell}}$ be the Sylow ${\ell}$-subgroup of the ideal class group ${\tilde{\mathcal{C}}}l_K$ of $\mathcal{O}_K$. The structure of ${\tilde{\mathcal{C}}}l_{K,{\ell}}$ as $\mathbb{Z}_{\ell}[G]$/<$N_G$>-module is determined the dimensions $${\lambda}_i\;:=dim_{\mathbb{F}_{\ell}}({\tilde{\mathcal{C}}}l_{K,{\ell}}^{({\sigma}-1)^{i-1}}/{\tilde{\mathcal{C}}}l_{K,{\ell}}^{({\sigma}-1)^i})$$ for $i{\geq}1$. In this paper we investigate the dimensions ${\lambda}_1$ and ${\lambda}_2$.
Let X be a minimal del Pezzo surface of degree 2 over a finite field ${\mathbb{F}}_q$. The image ${\Gamma}$ of the Galois group Gal(${\bar{\mathbb{F}}}_q/{\mathbb{F}}_q$) in the group Aut($Pic({\bar{X}})$) is a cyclic subgroup of the Weyl group W($E_7$). There are 60 conjugacy classes of cyclic subgroups in W($E_7$) and 18 of them correspond to minimal del Pezzo surfaces. In this paper we study which possibilities of these subgroups for minimal del Pezzo surfaces of degree 2 can be achieved for given q.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.8
no.2
/
pp.15-21
/
2008
This paper discuss the sequential digital logic systems and arithmetic operation algorithms which is the important material in computer architecture using analysis and synthesis which is based on extension logic for binary logic over galois fields. In sequential digital logic systems, we construct the moore model without feedback sequential logic systems after we obtain the next state function and output function using building block T-gate. Also, we obtain each algorithms of the addition, subtraction, multiplication, division based on the finite fields mathematical properties. Especially, in case of P=2 over GF($P^m$), the proposed algorithm have a advantage which will be able to apply traditional binary logic directly.The proposed method can construct more efficiency digital logic systems because it can be extended traditional binary logic to extension logic.
Journal of the Korea Institute of Information Security & Cryptology
/
v.12
no.6
/
pp.17-28
/
2002
XTR is a new method to represent elements of a subgroup of a multiplicative group of a finite field GF( $p^{6m}$) and it can be generalized to the field GF( $p^{6m}$)$^{[6,9]}$ This paper progress optimal extention fields for XTR among Galois fields GF ( $p^{6m}$) which can be aplied to XTR. In order to select such fields, we introduce a new notion of Generalized Opitimal Extention Fields(GOEFs) and suggest a condition of prime p, a defining polynomial of GF( $p^{2m}$) and a fast method of multiplication in GF( $p^{2m}$) to achieve fast finite field arithmetic in GF( $p^{2m}$). From our implementation results, GF( $p^{36}$ )longrightarrowGF( $p^{12}$ ) is the most efficient extension fields for XTR and computing Tr( $g^{n}$ ) given Tr(g) in GF( $p^{12}$ ) is on average more than twice faster than that of the XTR system on Pentium III/700MHz which has 32-bit architecture.$^{[6,10]/ [6,10]/6,10]}$
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.11C
/
pp.892-897
/
2008
In this paper, a new architecture for digit-parallel/bit-serial GF$(2^m)$ multiplier with low latency is proposed. The proposed multiplier operates in polynomial basis of GF$(2^m)$ and produces multiplication results at a rate of one per D clock cycles, where D is the selected digit size. The digit-parallel/bit-serial multiplier is faster than bit-serial ones but with lower area complexity than bit-parallel ones. The most significant feature of the proposed architecture is that a trade-off between hardware complexity and delay time can be achieved.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.4C
/
pp.337-342
/
2010
In this paper, a new architecture for digit-parallel/bit-serial GF($2^m$) multiplier with low complexity is proposed. The proposed multiplier operates in polynomial basis of GF($2^m$) and produces multiplication results at a rate of one per D clock cycles, where D is the selected digit size. The digit-parallel/bit-serial multiplier is faster than bit-serial ones but with lower area complexity than bit-parallel ones. The most significant feature of the digit-parallel/bit-serial architecture is that a trade-off between hardware complexity and delay time can be achieved. But the traditional digit-parallel/bit-serial multiplier needs extra hardware for high speed. In this paper a new low complexity efficient digit-parallel/bit-serial multiplier is presented.
Proceedings of the Korea Society for Industrial Systems Conference
/
2002.06a
/
pp.190-194
/
2002
Multiplication in Galois Field GF(2/sup m/) is a primary operation for many applications, particularly for public key cryptography such as Diffie-Hellman key exchange, ElGamal. The current paper presents a new architecture that can process Montgomery multiplication over GF(2/sup m/) in m clock cycles based on cellular automata. It is possible to implement the modular exponentiation, division, inversion /sup 1)/architecture, etc. efficiently based on the Montgomery multiplication proposed in this paper. Since cellular automata architecture is simple, regular, modular and cascadable, it can be utilized efficiently for the implementation of VLSI.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.