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REDEI MATRIX IN FUNCTION FIELDS

Hwanyup Jung*

Abstract. Let K be a finite cyclic extension of k = Fq(T ) of

prime degree `. Let C̃lK,` be the Sylow `-subgroup of the ideal class

group C̃lK of OK . The structure of C̃lK,` as Z`[G]/〈NG〉-module is
determined the dimensions

λi := dimF`(C̃l
(σ−1)i−1

K,` /C̃l
(σ−1)i

K,` )

for i ≥ 1. In this paper we investigate the dimensions λ1 and λ2.

1. Introduction

Let k be the rational function field over the finite field Fq of q ele-
ments. Take a generator, say T , of k over Fq. Then k = Fq(T ). Let
A = Fq[T ] and A+ be the set of all monic polynomials in A. Let ∞ be
the place of k associated to (1/T ) and k∞ the completion of k at ∞.
Set C̃ := k∞( q−1

√
−1/T ), which is the maximal totally tamely ramified

extension of k∞. We denote by k̃ab the maximal abelian extension of k

inside C̃. Then k̃ab =
⋃

N∈A+ kN , where kN is the cyclotomic function
field of conductor N . Any finite abelian extension K of k inside k̃ab is
contained in kN for some N ∈ A+. By the conductor of K we mean
the monic polynomial N ∈ A+ of the smallest degree such that K is
contained in kN . As in classical case, such finite abelian extensions of
k can be described by Dirichlet characters of A ([1, §1]) and its narrow
genus field can be easily obtained. Throughout the paper, by a finite
abelian extension of k we always assume that it is contained in k̃ab.

Fix a prime number `. Consider a finite cyclic extension K/k of
degree ` with Galois group G. Let M be a finite abelian `-group with a
natural G-action and annihilated by the norm NG =

∑
g∈G g. Then it
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is a finite module over the discrete valuation ring Z`[G]/〈NG〉. Thus its
Galois module structure is given by the dimensions

λi := dimF`

(M(σ−1)i−1
/M(σ−1)i)

for i ≥ 1,

where the quotient is a F`-vector space in a natural way and σ is a
generator of G. Let OK be the integral closure of A in K. Recently
Wittmann [5] has investigated the dimensions λ1 and λ2 when M is
the Sylow `-subgroup ClK,` of the ideal class group ClK of OK and `
is different from the characteristic of k. The aim of this paper is to
investigate the dimensions λ1 and λ2 when M is the Sylow `-subgroup
C̃lK,` of the narrow ideal class group C̃lK of OK and ` is an arbitrary
prime number. In the number field case the dimensions λi have been
investigated first by Redei for ` = 2 in [4], and then for arbitrary ` by
Gras [3].

2. Narrow genus field and dimension λ1

We fix a sign function sgn : k∗∞ → F∗q by letting sgn(1/T ) = 1. Let
K be a finite abelian extension of k and S∞(K) be the set of places of
K lying above ∞. For each v ∈ S∞(K), the completion Kv of K at
v is a finite extension of k∞ in C̃. The sign map sgnv : L∗v → F∗q is
defined by sgnv(x) = sgn(Nv(x)), where Nv is the norm map from Kv

to k∞. An element x ∈ K is called totally positive if sgnv(x) = 1 for
every v ∈ S∞(K). Let IK be the group of nonzero fractional ideals of
OK and P̃K its subgroup of principal ideals generated by totally positive
elements. The narrow ideal class group C̃lK of OK is defined to be the
group IK/P̃K . The narrow Hilbert class field H̃K of K relative to S∞(K)
is defined as the maximal abelian extension of K in C̃ which is unramified
outside S∞(K). It is well known that Gal(H̃K/K) is isomorphic to C̃lK
via Artin automorphism. The narrow genus field G̃K/k is defined to be
the maximal extension of K in H̃K which is the composite of K and some
abelian extension of k. The Galois group Gal(G̃K/k/K) and the degree
[G̃K/k : K] are called the narrow genus group and narrow genus number
of K/k, respectively. For more details on genus theory for function fields
we refer to Bae and Koo’s paper [2].

Now we consider a finite cyclic extension K/k of degree ` with Galois
group G. Let σ be a generator of G. Then Gal(G̃K/k/K) is isomorphic

to C̃lK/C̃lσ−1

K via Artin automorphism.



Redei Matrix 321

Lemma 2.1. Let K/k be as above. Then C̃lK,`/C̃l
σ−1

K,` ' C̃lK/C̃lσ−1

K .

Proof. At first, we note that C̃lGK = C̃lGK,`. From the exact sequences

1 → C̃lGK → C̃lK → C̃lσ−1

K → 1 and 1 → C̃lGK,` → C̃lK,` → C̃lσ−1

K,` → 1,

we have |C̃lK/C̃lσ−1

K | = |C̃lGK | = |C̃lGK,`| = |C̃lK,`/C̃l
σ−1

K,` |. The inclu-

sion C̃lK,` ↪→ C̃lK induces a homomorphism C̃lK,` → C̃lK/C̃lσ−1

K , whose

kernel is C̃lK,` ∩ C̃l
σ−1

K = C̃lσ−1

K,` . Thus we have an injective homomor-

phism C̃lK,`/C̃l
σ−1

K,` → C̃lK/C̃lσ−1

K , which must be an isomorphism be-

cause |C̃lK,`/C̃l
σ−1

K,` | = |C̃lK/C̃lσ−1

K |.

Recall that λi := dimF`

(C̃l(σ−1)i−1

K,` /C̃l(σ−1)i

K,`

)
for i ≥ 1. It is known [2,

Theorem 3.10] that Gal(G̃K/k/K) is a finite elementary abelian `-group
of rank t − 1, where t is the number of finite primes of k ramifying in
K. Thus we have

Proposition 2.2. λ1 = t− 1.

Let χ be a Dirichlet character which is a generator of the character
group XG of G. If Fχ =

∏t
i=1 P ei

i is the prime factorization of the
conductor Fχ of χ, then χ =

∏t
i=1 χPi , where χPi is a Dirichlet character

of degree ` with the conductor P ei
i . We denote by k(χPi) the abelian

extension of k corresponding to 〈χPi〉. Then we have

Proposition 2.3. G̃K/k =
∏t

i=1 k(χPi).

Proof. Let K̃ =
∏t

i=1 k(χPi), which is the finite abelian extension of
k corresponding to X̃ =

∏t
i=1〈χPi〉. Since XG ⊆ X̃, we have K ⊆ K̃

and so H̃K ⊆ H̃
K̃

. Thus G̃K/k ⊆ G̃
K̃/k

= K̃. Here the equality follows

from Theorem 3.9 in [2]. But [G̃K/k : K] = `t−1 = [K̃ : K]. Thus we
have G̃K/k = K̃.

3. Redei matrix and dimension λ2

We continue the notations in section 2. In this section we investigate
the dimension λ2.

Lemma 3.1. C̃lGK = IG
KP̃K/P̃K .
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Proof. Let α ∈ C̃lGK . Then α is represented by a fractional ideal
a such that aσ = (x)a for some totally positive element x ∈ K with
NK/k(x) = 1. Thus x = y/yσ for some y ∈ K∗ by Hilbert’s Theorem
90. We may assume that y is totally positive. Since ((y)a)σ = (y)a, we

have (y)a ∈ IG
K . Thus α ∈ IG

KP̃K/P̃K . Therefore C̃lGK ⊆ IG
KP̃K/P̃K .

The converse is obvious.

Let P1, P2, . . . , Pt be the finite primes of k ramifying in K. Let pi be
the prime ideal of K lying above Pi (1 ≤ i ≤ t). Then we have

Corollary 3.2. C̃lGK = 〈α1, α2, . . . , αt〉, where αi is the class in C̃lGK
represented by pi (1 ≤ i ≤ t).

Proof. For any finite prime P of k, let eP be the ramification index
of P in K. Then IG

K is a free abelian group with a basis {(POK)1/eP :
P is a finite prime of k}. Since PiOK = p`

i with ePi = ` (1 ≤ i ≤ t) and

POK ∈ P̃K with eP = 1 for P 6= Pi, C̃lGK is generated by {αi : 1 ≤ i ≤ t}
by Lemma 3.1.

Lemma 3.3. Let φ : C̃lGK,` → C̃lK,`/C̃l
σ−1

K,` be the natural homomor-

phism induces by the inclusion C̃lGK,` ↪→ C̃lK,`. Then we have λ2 =
dimF`

(Ker(φ)).

Proof. At first, we note that Ker(φ) = C̃lGK,` ∩ C̃l
σ−1

K,` . From the exact

sequence 1 → C̃lGK,` → C̃lK,` → C̃lσ−1

K,` → 1, we get the following exact
sequence

(1) 1 → C̃lGK,`C̃l
σ−1

K,` /C̃lσ−1

K,` → C̃lK,`/C̃l
σ−1

K,` → C̃lσ−1

K,` /C̃l(σ−1)2

K,` → 1.

Since C̃lGK,`C̃l
σ−1

K,` /C̃lσ−1

K,` ' C̃lGK,`/C̃l
G

K,` ∩ C̃l
σ−1

K,` , (1) induces the following
exact sequence

1 → C̃lGK,` ∩ C̃l
σ−1

K,` → C̃lGK,` → C̃lK,`/C̃l
σ−1

K,` → C̃lσ−1

K,` /C̃l(σ−1)2

K,` → 1,

from where we get λ2 = dimF`
(C̃lGK,` ∩ C̃l

σ−1

K,` ).

Let {ei : 1 ≤ i ≤ t} be the standard basis of the F`-vector space Ft
`.

We define ρ : Ft
` → C̃lGK by ρ(ei) = αi for 1 ≤ i ≤ t. Then we have

Lemma 3.4. ρ is a surjective homomorphism with dimF`
(Ker(ρ)) = 1.
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Proof. By Corollary 3.2, ρ is a surjective homomorphism. Since
dimF`

(C̃lGK) = dimF`
(C̃lK/C̃lσ−1

K ) = t − 1, we have dimF`
(Ker(ρ)) =

t− dimF`
(C̃lGK) = 1.

Since χ and χPi are characters of degree `, we may regard them as
characters with values in F`. Then χ =

∑t
i=1 χPi . Let R = (aij)1≤i,j≤t

be the Redei matrix of K defined by aij = χPi(Pj) if i 6= j and∑t
i=1 aij = 0 in F`.

Theorem 3.5. λ2 = t− 1− rankF`
(R).

Proof. Each character χPi induces an isomorphism Gal(K(χPi)/k) ∼→
F`. We denote it also by χPi . They can be combined into an isomorphism⊕t

i=1 χPi : Gal(G̃K/k/k) ∼→ Ft
`. The Redei map R : Ft

` → Ft
` is defined

as the composite map

R : Ft
`

ρ→ C̃lGK
φ→ C̃lK/C̃lσ−1

K
∼→ Gal(G̃K/k/K) ↪→ Gal(G̃K/k/k)

⊕
χPi−→ Ft

`.

Since dimF`
(Ker(ρ)) = 1, we have

λ2 = dimF`
(Ker(R))− 1 = t− 1− rankF`

(R).

The image of a basis vector ej is the Artin symbol of pj in Gal(G̃K/k/K).
If i 6= j, the restriction of this symbol to Gal(k(χPi)/k) is the Artin
symbol of Pj , and this is mapped to aij = χPi(Pj) by χPi . For any
µ ∈ Gal(G̃K/k/K), let µi be the restriction of µ to Gal(K(χPi)/k).
Then

⊕t
i=1 χPi(µ) = (χPi(µi)) ∈ Ft

`. Since µ is the identity on K, we
have

∑t
i=1 χPi(µi) = χ(µ) = 0. Thus

⊕t
i=1 χPi maps Gal(G̃K/k/K)

into the hyperplane {(ai)i ∈ Ft
` :

∑t
i=1 ai = 0}. The desired identity∑t

i=1 aij = 0 follows immediately.
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