REDEI MATRIX IN FUNCTION FIELDS

HWANYUP JUNG*

ABSTRACT. Let K be a finite cyclic extension of $k = \mathbb{F}_q(T)$ of prime degree ℓ . Let $\widetilde{\mathcal{C}}l_{K,\ell}$ be the Sylow ℓ -subgroup of the ideal class group $\widetilde{\mathcal{C}}l_K$ of \mathcal{O}_K . The structure of $\widetilde{\mathcal{C}}l_{K,\ell}$ as $\mathbb{Z}_\ell[G]/\langle N_G \rangle$ -module is determined the dimensions

$$\lambda_i := \dim_{\mathbb{F}_\ell} (\widetilde{\mathcal{C}} l_{K,\ell}^{(\sigma-1)^{i-1}} / \widetilde{\mathcal{C}} l_{K,\ell}^{(\sigma-1)^i})$$

for $i \geq 1$. In this paper we investigate the dimensions λ_1 and λ_2 .

1. Introduction

Let k be the rational function field over the finite field \mathbb{F}_q of q elements. Take a generator, say T, of k over \mathbb{F}_q . Then $k = \mathbb{F}_q(T)$. Let $\mathbb{A} = \mathbb{F}_q[T]$ and \mathbb{A}^+ be the set of all monic polynomials in \mathbb{A} . Let ∞ be the place of k associated to (1/T) and k_{∞} the completion of k at ∞ . Set $\widetilde{C} := k_{\infty} (\sqrt[q-1]{-1/T})$, which is the maximal totally tamely ramified extension of k_{∞} . We denote by \widetilde{k}^{ab} the maximal abelian extension of k inside \widetilde{C} . Then $\widetilde{k}^{ab} = \bigcup_{N \in \mathbb{A}^+} k_N$, where k_N is the cyclotomic function field of conductor N. Any finite abelian extension K of k inside \widetilde{k}^{ab} is contained in k_N for some $N \in \mathbb{A}^+$. By the conductor of K we mean the monic polynomial $N \in \mathbb{A}^+$ of the smallest degree such that K is contained in k_N . As in classical case, such finite abelian extensions of k can be described by Dirichlet characters of \mathbb{A} ([1, §1]) and its narrow genus field can be easily obtained. Throughout the paper, by a finite abelian extension of k we always assume that it is contained in \tilde{k}^{ab} .

Fix a prime number ℓ . Consider a finite cyclic extension K/k of degree ℓ with Galois group G. Let \mathcal{M} be a finite abelian ℓ -group with a natural G-action and annihilated by the norm $N_G = \sum_{g \in G} g$. Then it

Received September 22, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R58, 11R29.

Key words and phrases: class group of function fields, Galois module structure.

This work was supported by the research grant of the Chungbuk National University in 2006.

is a finite module over the discrete valuation ring $\mathbb{Z}_{\ell}[G]/\langle N_G \rangle$. Thus its Galois module structure is given by the dimensions

$$\lambda_i := \dim_{\mathbb{F}_\ell} \left(\mathcal{M}^{(\sigma-1)^{i-1}} / \mathcal{M}^{(\sigma-1)^i} \right) \text{ for } i \ge 1,$$

where the quotient is a \mathbb{F}_{ℓ} -vector space in a natural way and σ is a generator of G. Let \mathcal{O}_K be the integral closure of \mathbb{A} in K. Recently Wittmann [5] has investigated the dimensions λ_1 and λ_2 when \mathcal{M} is the Sylow ℓ -subgroup $\mathcal{C}l_{K,\ell}$ of the ideal class group $\mathcal{C}l_K$ of \mathcal{O}_K and ℓ is different from the characteristic of k. The aim of this paper is to investigate the dimensions λ_1 and λ_2 when \mathcal{M} is the Sylow ℓ -subgroup $\widetilde{\mathcal{C}}l_{K,\ell}$ of the narrow ideal class group $\widetilde{\mathcal{C}}l_K$ of \mathcal{O}_K and ℓ is an arbitrary prime number. In the number field case the dimensions λ_i have been investigated first by Redei for $\ell=2$ in [4], and then for arbitrary ℓ by Gras [3].

2. Narrow genus field and dimension λ_1

We fix a sign function $sgn: k_{\infty}^* \to \mathbb{F}_q^*$ by letting sgn(1/T) = 1. Let K be a finite abelian extension of k and $S_{\infty}(K)$ be the set of places of K lying above ∞ . For each $v \in S_{\infty}(K)$, the completion K_v of K at v is a finite extension of k_{∞} in \widetilde{C} . The sign map $sgn_v: L_v^* \to \mathbb{F}_q^*$ is defined by $sgn_v(x) = sgn(N_v(x))$, where N_v is the norm map from K_v to k_{∞} . An element $x \in K$ is called totally positive if $sgn_v(x) = 1$ for every $v \in S_{\infty}(K)$. Let \mathcal{I}_K be the group of nonzero fractional ideals of \mathcal{O}_K and \mathcal{P}_K its subgroup of principal ideals generated by totally positive elements. The narrow ideal class group $\mathcal{C}l_K$ of \mathcal{O}_K is defined to be the group $\mathcal{I}_K/\mathcal{P}_K$. The narrow Hilbert class field H_K of K relative to $S_{\infty}(K)$ is defined as the maximal abelian extension of K in \widetilde{C} which is unramified outside $S_{\infty}(K)$. It is well known that $Gal(H_K/K)$ is isomorphic to Cl_K via Artin automorphism. The narrow genus field $G_{K/k}$ is defined to be the maximal extension of K in H_K which is the composite of K and some abelian extension of k. The Galois group $Gal(\widetilde{G}_{K/k}/K)$ and the degree $[G_{K/k}:K]$ are called the narrow genus group and narrow genus number of K/k, respectively. For more details on genus theory for function fields we refer to Bae and Koo's paper [2].

Now we consider a finite cyclic extension K/k of degree ℓ with Galois group G. Let σ be a generator of G. Then $Gal(\widetilde{G}_{K/k}/K)$ is isomorphic to $\widetilde{C}l_K/\widetilde{C}l_K^{\sigma-1}$ via Artin automorphism.

Lemma 2.1. Let K/k be as above. Then $\widetilde{\mathcal{C}l}_{K,\ell}/\widetilde{\mathcal{C}l}_{K,\ell}^{\sigma-1}\simeq \widetilde{\mathcal{C}l}_K/\widetilde{\mathcal{C}l}_K^{\sigma-1}$.

Proof. At first, we note that $\widetilde{Cl}_K^G = \widetilde{Cl}_{K,\ell}^G$. From the exact sequences $1 \to \widetilde{Cl}_K^G \to \widetilde{Cl}_K \to \widetilde{Cl}_K^{\sigma-1} \to 1$ and $1 \to \widetilde{Cl}_{K,\ell}^G \to \widetilde{Cl}_{K,\ell} \to \widetilde{Cl}_{K,\ell}^{\sigma-1} \to 1$, we have $|\widetilde{Cl}_K/\widetilde{Cl}_K^{\sigma-1}| = |\widetilde{Cl}_K^G| = |\widetilde{Cl}_{K,\ell}^G| = |\widetilde{Cl}_{K,\ell}/\widetilde{Cl}_{K,\ell}^{\sigma-1}|$. The inclusion $\widetilde{Cl}_{K,\ell} \hookrightarrow \widetilde{Cl}_K$ induces a homomorphism $\widetilde{Cl}_{K,\ell} \to \widetilde{Cl}_K/\widetilde{Cl}_K^{\sigma-1}$, whose kernel is $\widetilde{Cl}_{K,\ell} \cap \widetilde{Cl}_K^{\sigma-1} = \widetilde{Cl}_{K,\ell}^{\sigma-1}$. Thus we have an injective homomorphism $\widetilde{Cl}_{K,\ell}/\widetilde{Cl}_{K,\ell}^{\sigma-1} \to \widetilde{Cl}_K/\widetilde{Cl}_K^{\sigma-1}$, which must be an isomorphism because $|\widetilde{Cl}_{K,\ell}/\widetilde{Cl}_{K,\ell}^{\sigma-1}| = |\widetilde{Cl}_K/\widetilde{Cl}_K^{\sigma-1}|$.

Recall that $\lambda_i := \dim_{\mathbb{F}_{\ell}} \left(\widetilde{Cl}_{K,\ell}^{(\sigma-1)^{i-1}} / \widetilde{Cl}_{K,\ell}^{(\sigma-1)^i} \right)$ for $i \geq 1$. It is known [2, Theorem 3.10] that $Gal(\widetilde{G}_{K/k}/K)$ is a finite elementary abelian ℓ -group of rank t-1, where t is the number of finite primes of k ramifying in K. Thus we have

Proposition 2.2. $\lambda_1 = t - 1$.

Let χ be a Dirichlet character which is a generator of the character group X_G of G. If $F_{\chi} = \prod_{i=1}^t P_i^{e_i}$ is the prime factorization of the conductor F_{χ} of χ , then $\chi = \prod_{i=1}^t \chi_{P_i}$, where χ_{P_i} is a Dirichlet character of degree ℓ with the conductor $P_i^{e_i}$. We denote by $k(\chi_{P_i})$ the abelian extension of k corresponding to $\langle \chi_{P_i} \rangle$. Then we have

Proposition 2.3. $\widetilde{G}_{K/k} = \prod_{i=1}^t k(\chi_{P_i}).$

Proof. Let $\widetilde{K} = \prod_{i=1}^t k(\chi_{P_i})$, which is the finite abelian extension of k corresponding to $\widetilde{X} = \prod_{i=1}^t \langle \chi_{P_i} \rangle$. Since $X_G \subseteq \widetilde{X}$, we have $K \subseteq \widetilde{K}$ and so $\widetilde{H}_K \subseteq \widetilde{H}_{\widetilde{K}}$. Thus $\widetilde{G}_{K/k} \subseteq \widetilde{G}_{\widetilde{K}/k} = \widetilde{K}$. Here the equality follows from Theorem 3.9 in [2]. But $[\widetilde{G}_{K/k} : K] = \ell^{t-1} = [\widetilde{K} : K]$. Thus we have $\widetilde{G}_{K/k} = \widetilde{K}$.

3. Redei matrix and dimension λ_2

We continue the notations in section 2. In this section we investigate the dimension λ_2 .

Lemma 3.1.
$$\widetilde{\mathcal{C}l}_K^G = \mathcal{I}_K^G \widetilde{\mathcal{P}}_K / \widetilde{\mathcal{P}}_K$$
.

Proof. Let $\alpha \in \widetilde{\mathcal{C}l}_K^G$. Then α is represented by a fractional ideal \mathfrak{a} such that $\mathfrak{a}^{\sigma} = (x)\mathfrak{a}$ for some totally positive element $x \in K$ with $N_{K/k}(x) = 1$. Thus $x = y/y^{\sigma}$ for some $y \in K^*$ by Hilbert's Theorem 90. We may assume that y is totally positive. Since $((y)\mathfrak{a})^{\sigma} = (y)\mathfrak{a}$, we have $(y)\mathfrak{a} \in \mathcal{I}_K^G$. Thus $\alpha \in \mathcal{I}_K^G \widetilde{\mathcal{P}}_K/\widetilde{\mathcal{P}}_K$. Therefore $\widetilde{\mathcal{C}l}_K^G \subseteq \mathcal{I}_K^G \widetilde{\mathcal{P}}_K/\widetilde{\mathcal{P}}_K$. The converse is obvious.

Let P_1, P_2, \ldots, P_t be the finite primes of k ramifying in K. Let \mathfrak{p}_i be the prime ideal of K lying above P_i $(1 \le i \le t)$. Then we have

COROLLARY 3.2. $\widetilde{\mathcal{C}l}_K^G = \langle \alpha_1, \alpha_2, \dots, \alpha_t \rangle$, where α_i is the class in $\widetilde{\mathcal{C}l}_K^G$ represented by \mathfrak{p}_i $(1 \leq i \leq t)$.

Proof. For any finite prime P of k, let e_P be the ramification index of P in K. Then \mathcal{I}_K^G is a free abelian group with a basis $\{(P\mathcal{O}_K)^{1/e_P}: P \text{ is a finite prime of } k\}$. Since $P_i\mathcal{O}_K = \mathfrak{p}_i^\ell$ with $e_{P_i} = \ell$ $(1 \leq i \leq t)$ and $P\mathcal{O}_K \in \widetilde{\mathcal{P}}_K$ with $e_P = 1$ for $P \neq P_i$, $\widetilde{\mathcal{C}l}_K^G$ is generated by $\{\alpha_i : 1 \leq i \leq t\}$ by Lemma 3.1.

LEMMA 3.3. Let $\phi: \widetilde{Cl}_{K,\ell}^G \to \widetilde{Cl}_{K,\ell}/\widetilde{Cl}_{K,\ell}^{\sigma-1}$ be the natural homomorphism induces by the inclusion $\widetilde{Cl}_{K,\ell}^G \hookrightarrow \widetilde{Cl}_{K,\ell}$. Then we have $\lambda_2 = \dim_{\mathbb{F}_{\ell}}(\operatorname{Ker}(\phi))$.

Proof. At first, we note that $\operatorname{Ker}(\phi) = \widetilde{\mathcal{C}l}_{K,\ell}^G \cap \widetilde{\mathcal{C}l}_{K,\ell}^{\sigma-1}$. From the exact sequence $1 \to \widetilde{\mathcal{C}l}_{K,\ell}^G \to \widetilde{\mathcal{C}l}_{K,\ell} \to \widetilde{\mathcal{C}l}_{K,\ell}^{\sigma-1} \to 1$, we get the following exact sequence

$$(1) \qquad 1 \to \widetilde{\mathcal{C}}l_{K,\ell}^{G}\widetilde{\mathcal{C}}l_{K,\ell}^{\sigma-1}/\widetilde{\mathcal{C}}l_{K,\ell}^{\sigma-1} \to \widetilde{\mathcal{C}}l_{K,\ell}/\widetilde{\mathcal{C}}l_{K,\ell}^{\sigma-1} \to \widetilde{\mathcal{C}}l_{K,\ell}^{\sigma-1}/\widetilde{\mathcal{C}}l_{K,\ell}^{(\sigma-1)^{2}} \to 1.$$

Since $\widetilde{Cl}_{K,\ell}^G \widetilde{Cl}_{K,\ell}^{\sigma-1} / \widetilde{Cl}_{K,\ell}^{\sigma-1} \simeq \widetilde{Cl}_{K,\ell}^G / \widetilde{Cl}_{K,\ell}^G \cap \widetilde{Cl}_{K,\ell}^{\sigma-1}$, (1) induces the following exact sequence

$$1 \to \widetilde{\mathcal{C}}l_{K,\ell}^G \cap \widetilde{\mathcal{C}}l_{K,\ell}^{\sigma-1} \to \widetilde{\mathcal{C}}l_{K,\ell}^G \to \widetilde{\mathcal{C}}l_{K,\ell}/\widetilde{\mathcal{C}}l_{K,\ell}^{\sigma-1} \to \widetilde{\mathcal{C}}l_{K,\ell}^{\sigma-1}/\widetilde{\mathcal{C}}l_{K,\ell}^{(\sigma-1)^2} \to 1,$$
 from where we get $\lambda_2 = \dim_{\mathbb{F}_{\ell}}(\widetilde{\mathcal{C}}l_{K,\ell}^G \cap \widetilde{\mathcal{C}}l_{K,\ell}^{\sigma-1}).$

Let $\{\mathbf{e}_i : 1 \leq i \leq t\}$ be the standard basis of the \mathbb{F}_{ℓ} -vector space \mathbb{F}_{ℓ}^t . We define $\rho : \mathbb{F}_{\ell}^t \to \widetilde{\mathcal{C}}l_K^G$ by $\rho(\mathbf{e}_i) = \alpha_i$ for $1 \leq i \leq t$. Then we have

LEMMA 3.4. ρ is a surjective homomorphism with $\dim_{\mathbb{F}_{\ell}}(\mathrm{Ker}(\rho)) = 1$.

Redei Matrix 323

Proof. By Corollary 3.2, ρ is a surjective homomorphism. Since $\dim_{\mathbb{F}_{\ell}}(\widetilde{Cl}_K^G) = \dim_{\mathbb{F}_{\ell}}(\widetilde{Cl}_K/\widetilde{Cl}_K^{\sigma-1}) = t-1$, we have $\dim_{\mathbb{F}_{\ell}}(\operatorname{Ker}(\rho)) = t-\dim_{\mathbb{F}_{\ell}}(\widetilde{Cl}_K^G) = 1$.

Since χ and χ_{P_i} are characters of degree ℓ , we may regard them as characters with values in \mathbb{F}_{ℓ} . Then $\chi = \sum_{i=1}^{t} \chi_{P_i}$. Let $R = (a_{ij})_{1 \leq i,j \leq t}$ be the Redei matrix of K defined by $a_{ij} = \chi_{P_i}(P_j)$ if $i \neq j$ and $\sum_{i=1}^{t} a_{ij} = 0$ in \mathbb{F}_{ℓ} .

Theorem 3.5. $\lambda_2 = t - 1 - \operatorname{rank}_{\mathbb{F}_{\ell}}(R)$.

Proof. Each character χ_{P_i} induces an isomorphism $Gal(K(\chi_{P_i})/k) \xrightarrow{\sim} \mathbb{F}_{\ell}$. We denote it also by χ_{P_i} . They can be combined into an isomorphism $\bigoplus_{i=1}^t \chi_{P_i} : Gal(\widetilde{G}_{K/k}/k) \xrightarrow{\sim} \mathbb{F}_{\ell}^t$. The Redei map $R : \mathbb{F}_{\ell}^t \to \mathbb{F}_{\ell}^t$ is defined as the composite map

$$R: \mathbb{F}^t_{\ell} \overset{\rho}{\to} \widetilde{C}l_K^G \overset{\phi}{\to} \widetilde{C}l_K / \widetilde{C}l_K^{\sigma-1} \overset{\sim}{\to} Gal(\widetilde{G}_{K/k}/K) \hookrightarrow Gal(\widetilde{G}_{K/k}/k) \overset{\bigoplus \chi_{P_i}}{\longrightarrow} \mathbb{F}^t_{\ell}.$$
 Since $\dim_{\mathbb{F}_{\ell}}(\operatorname{Ker}(\rho)) = 1$, we have

$$\lambda_2 = \dim_{\mathbb{F}_{\mathfrak{g}}}(\operatorname{Ker}(R)) - 1 = t - 1 - \operatorname{rank}_{\mathbb{F}_{\mathfrak{g}}}(R).$$

The image of a basis vector \mathbf{e}_j is the Artin symbol of \mathfrak{p}_j in $Gal(\widetilde{G}_{K/k}/K)$. If $i \neq j$, the restriction of this symbol to $Gal(k(\chi_{P_i})/k)$ is the Artin symbol of P_j , and this is mapped to $a_{ij} = \chi_{P_i}(P_j)$ by χ_{P_i} . For any $\mu \in Gal(\widetilde{G}_{K/k}/K)$, let μ_i be the restriction of μ to $Gal(K(\chi_{P_i})/k)$. Then $\bigoplus_{i=1}^t \chi_{P_i}(\mu) = (\chi_{P_i}(\mu_i)) \in \mathbb{F}^t_\ell$. Since μ is the identity on K, we have $\sum_{i=1}^t \chi_{P_i}(\mu_i) = \chi(\mu) = 0$. Thus $\bigoplus_{i=1}^t \chi_{P_i}$ maps $Gal(\widetilde{G}_{K/k}/K)$ into the hyperplane $\{(a_i)_i \in \mathbb{F}^t_\ell : \sum_{i=1}^t a_i = 0\}$. The desired identity $\sum_{i=1}^t a_{ij} = 0$ follows immediately.

References

- [1] B. Angles, On the class group problem for function fields. J. Number Theory **70** (1998), no. 2, 146–159.
- [2] S. Bae and J. Koo, Genus theory for function fields. J. Austral. Math. Soc. Ser. A 60 (1996), no. 3, 301–310.
- [3] G. Gras, Sur les ℓ -classes d'ideaux dans les extensions cycliques relatives de degre premier ℓ I, II. Ann. Inst. Fourier **23** (1973), no 3, 1–48; Ann. Inst. Fourier **23** (1973), no 4, 45–64.
- [4] L. Redei, Arithmetischer Beweis des Satzes uber die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkorper. J. Reine Angew. Math. 171 (1935), 55–60.

[5] C. Wittmann, ℓ -Class groups of cyclic function fields of degree ℓ . To appear in Finite Fields and Their Applications.

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: hyjung@chungbuk.ac.kr