• Title/Summary/Keyword: finite element solutions

Search Result 1,073, Processing Time 0.023 seconds

Nonlinear behavior of fiber reinforced cracked composite beams

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • This paper presents geometrically nonlinear behavior of cracked fiber reinforced composite beams by using finite element method with and the first shear beam theory. Total Lagrangian approach is used in the nonlinear kinematic relations. The crack model is considered as the rotational spring which separate into two parts of beams. In the nonlinear solution, the Newton-Raphson is used with incremental displacement. The effects of fibre orientation angles, the volume fraction, the crack depth and locations of the cracks on the geometrically nonlinear deflections of fiber reinforced composite are examined and discussed in numerical results. Also, the difference between geometrically linear and nonlinear solutions for the cracked fiber reinforced composite beams.

UNCONDITIONAL STABILITY AND CONVERGENCE OF FULLY DISCRETE FEM FOR THE VISCOELASTIC OLDROYD FLOW WITH AN INTRODUCED AUXILIARY VARIABLE

  • Huifang Zhang;Tong Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.273-302
    • /
    • 2023
  • In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.

Bending and free vibration analysis of FG sandwich beams using higher-order zigzag theory

  • Gupta, Simmi;Chalak, H.D.
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.483-499
    • /
    • 2022
  • In present work, bending and free vibration studies are carried out on different kinds of sandwich FGM beams using recently proposed (Chakrabarty et al. 2011) C-0 finite element (FE) based higher-order zigzag theory (HOZT). The material gradation is assumed along the thickness direction of the beam. Power-law, exponential-law, and sigmoidal laws (Garg et al 2021c) are used during the present study. Virtual work principle is used for bending solutions and Hamilton's principle is applied for carrying out free vibration analysis as done by Chalak et al. 2014. Stress distribution across the thickness of the beam is also studied in detail. It is observed that the behavior of an unsymmetric beam is different from what is exhibited by a symmetric one. Several new results are also reported which will be useful in future studies.

Treatment of Numerical Integration for Boundary Element Method (경계요소법에 있어서 수치적분에 관한 고찰)

  • Park, Sung-Oan;Kwak, Chang-Sup;Koo, Young-Duk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.185-193
    • /
    • 1996
  • Errors included in solutions obtained by the boundary element method are generally larger than those by the finite element method in the case that the number of discreted elements is small. One of the reasons is supposed to be attributed to the error which will be produced in the numerical integration of the singular functions in two dimensional elastic problem. Then, treatment of analytical integration to reduce computing time and to decrease errors of boundary element method are proposed.

  • PDF

Two rectangular elements based on analytical functions

  • Rezaiee-Pajand, Mohammad;Karimipour, Arash
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.147-175
    • /
    • 2020
  • To achieve appropriate stresses, two new rectangular elements are presented in this study. For reaching this aim, a complementary energy functional is used within an element for the analysis of plane problems. In this energy form, the Airy stress function will be used as a functional variable. Besides, some basic analytical solutions are found for the stress functions. These trial functions are matched with each element number of degrees of freedom, which leads to a number of equations with the anonymous constants. Subsequently, according to the principle of minimum complementary energy, the unknown constants can be expressed in terms of displacements. This system can be rewritten in terms of the nodal displacement. In this way, two new hybrid-rectangular triangular elements are formulated, which have 16 and 40 degrees of freedom. To validate the outcomes, extensive numerical studies are performed. All findings clearly demonstrate accuracies of structural displacements, as well as, stresses.

Numerical simulation of masonry shear panels with distinct element approach

  • Zhuge, Y.;Hunt, S.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.477-493
    • /
    • 2003
  • Masonry is not a simple material, the influence of mortar joints as a plane of weakness is a significant feature and this makes the numerical modelling of masonry very difficult especially when dynamic (seismic) analysis is involved. In order to develop a simple numerical model for masonry under earthquake load, an analytical model based on Distinct Element Method (DEM) is being developed. At the first stage, the model is applied to simulate the in-plane shear behaviour of an unreinforced masonry wall with and without opening where the testing results are available for comparison. In DEM, a solid is represented as an assembly of discrete blocks. Joints are modelled as interface between distinct bodies. It is a dynamic process and specially designed to model the behaviour of discontinuities. The numerical solutions obtained from the distinct element analysis are validated by comparing the results with those obtained from existing experiments and finite element modelling.

Performance Analysis of Various Forward Solvers in Electrical Impedance Tomography (전기 임피던스 단층촬영 기법에서 여러 정문제 해법들에 대한 성능 비교분석)

  • Kim, Bong Seok;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.407-414
    • /
    • 2015
  • Electrical impedance tomography is an imaging technique to reconstruct the internal conductivity distribution based on applied small currents and measured voltages through an array of electrodes attached on the boundary of a domain of interest. In this paper, an analytical solver with complete electrode model is derived and the analytical voltage data are calculated. Moreover, the voltage data are also computed with existing numerical solvers such as finite element method and boundary element method. The forward solutions using homogeneous and inhomogeneous conditions are compared with phantom experiments through the root mean square errors.

Acoustic Wave Propagation Characteristics Corresponding to the Cut-off Frequency in Gas Pipeline (가스 배관의 차단 주파수에 따른 음파전달특성 연구)

  • Kim, Min-Soo;Lee, Sang-Kwon;Jang, Sang-Yup;Koh, Jae-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.693-700
    • /
    • 2008
  • High-Pressure gas Pipeline which is buried in underground has the Possibility that will be exposed to unexpected dangerous impact of construction equipment. To protect from this kind of danger, the real-time health monitoring system of the high-pressure gas pipeline is necessary. First of all, to make the real-time health monitoring system clearly, the acoustic wave propagation characteristics which are made from various construction equipment impacts must be identified. In link of technical development that prevents the damage of high-pressure gas pipeline, this paper gives FEM(finite element method) and BEM(boundary element method) solutions to identify the acoustic wave propagation characteristic of the various impact input signals which consist of Direc delta function and convolution signal of 45 Hz square signal and random signal.

The Application of a Direct Coupled BEM-FEM Model to Predict the TL Characteristics of Simple Expansion Silencers with Vibratory Walls (진동 벽면을 가진 단순 확장형 소음기 모델의 투과손실 특성 해석을 위한 DIRECT BEM-FEM 연성 모델의 적용)

  • Choi, C.H.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.24-30
    • /
    • 1998
  • A directly coupled Boundary Element and Finite Element Model was applied to the dynamic analysis of a coupled acoustic silencer with vibratory wall. In this cupled BEM-FEM muffler model, the BEM model was used to discretize the acoustic cavity and the FEM model was used to discretize the vibratory wall structure. Then the BEM model was coupled with the FEM model. The results of the coupled BEM-FEM model for the dynamic analysis of the simple expansion type reactive muffler configurations with flexible walls were verified by comparing the predicted results to analytical solutions. In order to investigate the effects of the muffler's structural flexibility on its transmission loss(TL) characteristics, the results of the coupled BEM-FEM model in conjunction with the four-pole parameter theory were utilized. The muffler's TL characteristics using the BEM-FEM coupled model with flexible walls as compared to other muffler configurations was studied. Finally the muffler's TL values with respect to different wall's thickness are predicted and compared.

  • PDF

Evaluation of Vertical Bearing Capacity of Bucket Foundations in Layered Soil by Using Finite Element Analysis (유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Saeed-ullah, Jan Mandokhai
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.35-45
    • /
    • 2016
  • Estimation of vertical bearing capacity is critical in the design of bucket foundation used to support offshore structure. Empirical formula and closed form solutions for bucket foundations in uniform sand or clay profiles have been extensively studied. However, the vertical bearing capacity of bucket foundations in alternating layers of sand overlying clay is not well defined. We performed a series of two-dimensional axisymmetric finite element analyses on bucket foundations in sand overlying clay soil, using elasto-plastic soil model. The load transfer mechanism is investigated for various conditions. Performing the parametric study for the friction angles, undrained shear strengths, thickness of sand layer, and aspect ratios of foundation, we present the predictive charts for determining the vertical bearing capacities of bucket foundations in sand overlying clay layer. In addition, after comparing with the finite element analysis results, it is found that linear interpolation between the design charts give acceptable values in these ranges of parameters.