Browse > Article
http://dx.doi.org/10.12989/scs.2019.30.4.327

Nonlinear behavior of fiber reinforced cracked composite beams  

Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)
Publication Information
Steel and Composite Structures / v.30, no.4, 2019 , pp. 327-336 More about this Journal
Abstract
This paper presents geometrically nonlinear behavior of cracked fiber reinforced composite beams by using finite element method with and the first shear beam theory. Total Lagrangian approach is used in the nonlinear kinematic relations. The crack model is considered as the rotational spring which separate into two parts of beams. In the nonlinear solution, the Newton-Raphson is used with incremental displacement. The effects of fibre orientation angles, the volume fraction, the crack depth and locations of the cracks on the geometrically nonlinear deflections of fiber reinforced composite are examined and discussed in numerical results. Also, the difference between geometrically linear and nonlinear solutions for the cracked fiber reinforced composite beams.
Keywords
fiber reinforced composite; geometrically nonlinear analysis; beams; crack; finite element method; total Lagrangian;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Akbas, S.D. (2018a), "Nonlinear Thermal Displacements of Laminated Composite Beams", Coupl. Syst. Mech., Int. J., 7(6), 691-705.
2 Akbas, S.D. (2018b), "Thermal Post-Buckling Analysis of a Laminated Composite Beam", Struct. Eng. Mech., Int. J., 67(4), 337-346.
3 Akbas, S.D. (2018c), "Large Deflection Analysis of a Fiber Reinforced Composite Beam", Steel Compos. Struct., Int. J., 27(5), 567-576.
4 Akbas, S.D. (2018d), "Geometrically Nonlinear Analysis of a Laminated Composite Beam", Struct. Eng. Mech., Int. J., 66(1), 27-36.
5 Akbas, S.D. (2018e), "Post-Buckling Responses of a Laminated Composite Beam , Steel Compos. Struct., Int. J., 26(6), 733-743.
6 Akgoz, B. and Civalek, O . (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421.   DOI
7 Bayat, R., Jafari, A.A. and Rahmani, O. (2015), "Analytical solution for free vibration of laminated curved beam with magnetostrictive layers", Int. J. Appl. Mech., 7(3), 1550050.
8 Benselama, K., El Meiche, N., Bedia, E.A.A. and Tounsi, A. (2015), "Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory", Struct. Eng. Mech., Int. J., 55(1), 47-64.   DOI
9 Borneman, S.R., Hashemi, S.M. and Alighanbari, H. (2009), "Vibration Analysis of Cracked Stepped Laminated Composite Beams", Int. J. Vehicle Struct. Syst., 1(1), p.16.
10 Chen, W.J. and Li, X.P. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83, 431-444.   DOI
11 Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179.   DOI
12 Daneshmehr, A.R., Nateghi, A. and Inman, D.J. (2013), "Free vibration analysis of cracked composite beams subjected to coupled bending-torsion loads based on a first order shear deformation theory", Appl. Math. Model., 37(24), 10074-10091.   DOI
13 Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23.   DOI
14 Demir, C., Mercan K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Compos. Part B, 94, 1-10.   DOI
15 Ebrahimi, F. and Hosseini, S.H.S. (2017), "Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates", Eur. Phys. J. Plus, 132(4), 172.   DOI
16 Fan, Y. and Wang, H. (2017), "The effects of matrix cracks on the nonlinear vibration characteristics of shear deformable laminated beams containing carbon nanotube reinforced composite layers", Int. J. Mech. Sci., 124, 216-228.   DOI
17 Farokhi, H. and Ghayesh, M.H. (2015a), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33.   DOI
18 Farokhi, H. and Ghayesh, M.H. (2015b), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144.   DOI
19 Farokhi, H. and Ghayesh, M.H. (2018a), "Supercritical nonlinear parametric dynamics of Timoshenko microbeams", Commun. Nonlinear Sci. Numer. Simul., 59, 592-605.   DOI
20 Farokhi, H. and Ghayesh, M.H. (2018b), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213.   DOI
21 Ghayesh, M.H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596.   DOI
22 Ghayesh, M.H. and Farokhi, H. (2015), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73.   DOI
23 Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", Int. J. Eng. Sci., 122, 56-72.   DOI
24 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013a), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155.   DOI
25 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013b), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324.   DOI
26 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013c), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60.   DOI
27 Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785.   DOI
28 Ghoneam, S.M. (1995), "Dynamic analysis of open cracked laminated composite beams", Compos. Struct., 32(1-4), 3-11.   DOI
29 Jena, P.C., Parhi, D.R. and Pohit, G. (2016), "Dynamic Study of Composite Cracked Beam by Changing the Angle of Bidirectional Fibres", Iran. J. Sci. Technol. Transactions A: Sci., 40(1), 27-37.   DOI
30 Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402.   DOI
31 Kocaturk, T. and Akbas, S.D. (2010), "Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material", Struct. Eng. Mech., Int. J., 35(6), 677-697.   DOI
32 Krawczuk, M. and Ostachowicz, W.M. (1995), "Modelling and vibration analysis of a cantilever composite beam with a transverse open crack", J. Sound Vib., 183(1), 69-89.   DOI
33 Na, W.J. and Reddy, J.N. (2010), "Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams using The Layer Wise Theory", J. Solid Mech., 2(1), 1-18.
34 Krawczuk, M., Ostachowicz, W. and Zak, A. (1997), "Modal analysis of cracked, unidirectional composite beam", Compos. Part B: Eng., 28(5-6), 641-650.   DOI
35 Lal, A., Mulani, S.B. and Kapania, R.K. (2017), "Stochastic Fracture Response and Crack Growth Analysis of Laminated Composite Edge Crack Beams Using Extended Finite Element Method", Int. J. Appl. Mech., 9(4), 1750061.   DOI
36 Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
37 Nikpur, K. and Dimarogonas, A. (1988), "Local compliance of composite cracked bodies", Compos. Sci. Technol., 32(3), 209-223.   DOI
38 Karaagac, C., Ozturk, H. and Sabuncu, M. (2013), "Effects of an edge crack on the free vibration and lateral buckling of a cantilever laminated composite slender beam", J. Vib. Control, 19(16), 2506-2522.   DOI
39 Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1061-1073.   DOI
40 Shi, Y.B. and Hull, D. (1992), "Fracture of delaminated unidirectional composite beams", J. Compos. Mater., 26(15), 2172-2195.   DOI
41 Sun, H. and Zhou, L. (2012), "Analysis of damage characteristics for cracked composite structures using spectral element method", J. Vibroeng., 14(1), 430-439.
42 Akbas, S.D. (2015b), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., Int. J., 54(3), 433-451.   DOI
43 Tada, H., Paris, P.C. and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, Paris Production Incorporated and Del Research Corporation.
44 Toya, M., Aritomi, M. and Chosa, A. (1997), "Energy release rates for an interface crack embedded in a laminated beam subjected to three-point bending", J. Appl. Mech., 64(2), 375-382.   DOI
45 Vinson, J.R. and Sierakowski, R.L. (2002), "Behaviour of structures composed of composite materials", Kluwer Academic Publishers, ISBN 978-140-2009-04-4, Netherlands.
46 Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stabil. Dyn., 15(4), 1450065.