Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.4.483

Bending and free vibration analysis of FG sandwich beams using higher-order zigzag theory  

Gupta, Simmi (Department of Civil Engineering, National Institute of Technology)
Chalak, H.D. (Department of Civil Engineering, National Institute of Technology)
Publication Information
Steel and Composite Structures / v.45, no.4, 2022 , pp. 483-499 More about this Journal
Abstract
In present work, bending and free vibration studies are carried out on different kinds of sandwich FGM beams using recently proposed (Chakrabarty et al. 2011) C-0 finite element (FE) based higher-order zigzag theory (HOZT). The material gradation is assumed along the thickness direction of the beam. Power-law, exponential-law, and sigmoidal laws (Garg et al 2021c) are used during the present study. Virtual work principle is used for bending solutions and Hamilton's principle is applied for carrying out free vibration analysis as done by Chalak et al. 2014. Stress distribution across the thickness of the beam is also studied in detail. It is observed that the behavior of an unsymmetric beam is different from what is exhibited by a symmetric one. Several new results are also reported which will be useful in future studies.
Keywords
bending; finite element; free vibration; HOZT; sandwich FGM beam;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Davalos, J.F., Kim, Y. and Barbero, E.J. (1994), "Analysis of laminated beams with a layer-wise constant shear theory", 28, 241-253. https://doi.org/10.1016/0263-8223(94)90012-4.   DOI
2 Benoumrane, S., Lazreg, H., Hassaine, D.T. and Adda, B.E.A. (2015), "Analytical solution for bending analysis of functionally graded beam", Steel Compos. Struct., 19(4), 829-841. https://doi.org/10.12989/SCS.2015.19.4.829.   DOI
3 Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.   DOI
4 Amirani, C.A., Khalili, S.M.R. and Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free galerkin method", Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023.   DOI
5 Garg, A. and Chalak, H.D. (2020), "Free vibration analysis of laminated sandwich plates under thermal loading", IOP Confer. Ser. Mater. Sci. Eng., 872(1), 012055. https://doi.org/10.1088/1757-899X/872/1/012055.   DOI
6 Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258(1), 113427. https://doi.org/10.1016/j.compstruct.2020.113427.   DOI
7 Muller E., Drasar C., Schilz J. and Kaysser W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng. A, 362, 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.   DOI
8 Liu, J., Hao, C., Ye, W. and Zang, Q. (2021b), "Application of a new semi-analytic method in bending behavior of functionally graded material sandwich beams", Mech. Based Des. Struct. Mach., 1-24. https://doi.org/10.1080/15397734.2021.1890615.   DOI
9 Liu, J., He, B., Ye, W. and Yang, F. (2021a), "High performance model for buckling of functionally graded sandwich beams using a new semi-analytical method", Compos. Struct., 262, 113614. https://doi.org/10.1016/j.compstruct.2021.113614.   DOI
10 Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. and Bedia, E.A.A. (2012), "Analytical solutions for static shear correction factor of functionally graded rectangular beams", Mech. Adv. Mater. Struct., 19(8), 641-652. https://doi.org/10.1080/15376494.2011.581409.   DOI
11 Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024.   DOI
12 Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.   DOI
13 Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.   DOI
14 Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos Struct, 29(5), 579-590. https://doi.org/10.12989/scs.2018.29.5.579.   DOI
15 Arefi, M., Mohammad-Rezaei Bidgoli, E. and Zenkour, A.M. (2019), "Free vibration analysis of a sandwich nano-plate including FG core and piezoelectric face-sheets by considering neutral surface", Mech. Adv. Mater. Struct., 26(9), 741-752. https://doi.org/10.1080/15376494.2018.1455939.   DOI
16 Arya, H., Shimpi, R.P. and Naik N.K. (2000), "Layer-by-layer analysis of a simply supported thick flexible sandwich beam", AIAA J., 40(10), 10-13. https://doi.org/10.2514/2.1550.   DOI
17 Sayyad, A.S. and Ghugal, Y.M. (2019b), "Modeling and analysis of functionally graded sandwich beams: a review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.   DOI
18 Sayyad, A.S. and Ghugal, Y.M. (2020), "On the buckling analysis of functionally graded sandwich beams using a unified beam theory", J. Comput. Appl. Mech., 51(2), 443-453. https://doi.org/10.22059/JCAMECH.2020.310180.557.   DOI
19 Schulz, U., Peters, M., Bach, F.W. and Tegeder, G. (2003), "Graded coatings for thermal, wear and corrosion barriers", Mater. Sci. Eng. A., 362, 61-80. https://doi.org/10.1016/S0921-5093(03)00580-X.   DOI
20 Sciuva, M.D. and Icardi, U. (2001), "Numerical assessment of the core deformability effect on the behavior of sandwich beams", Compos. Struct., 52(1), 41-53. https://doi.org/10.1016/s0263-8223(00)00199-9.   DOI
21 Tessler, A. Sciuva, M.D. and Gherlone, M. (2009), "A refined zigzag beam theory for composite and sandwich beams", J. Compos. Mater., 43(9), 1051-1081. https://doi.org/10.1177/0021998308097730.   DOI
22 Turan, M. and Kahya. V. (2021), "Free vibration and buckling analysis of functionally graded sandwich beams by Navier's method", J. Faculty Eng. Architect. Gazi Univ., 36(2), 743-757. https://DOI 10.17341/gazimmfd.599928.   DOI
23 Garg, A., Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2022), "A parametric analysis of free vibration and bending behavior of sandwich beam containing an open-cell metal foam core", Arch. Civil Mech. Eng., 22(1), 1-15. https://doi.org/10.1007/s43452-021-00368-3.   DOI
24 Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.   DOI
25 Kahya, V. and Turan. M. (2018b), "Buckling analysis of laminated composite and sandwich beams by the finite element method", Steel Compos. Struct., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415.   DOI
26 Nguyen, D.K. and Tran. T.T. (2016a), "A corotational formulation for large displacement analysis of functionally graded sandwich beam and frame structures", Math. Prob. Eng., 1-12. https://doi.org/10.1155/2016/5698351.   DOI
27 Nguyen, T.K. and Nguyen, B.A. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237.   DOI
28 Nguyen, T.K., Vo, T.P., Nguyen, B.A. and Lee, J. (2016b), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.   DOI
29 Iurlaro, L., Ascione, A., Gherlone, M., Mattone, M. and Sciuva, M.D. (2015), "Free vibration analysis of sandwich beams using the refined zigzag theory: an experimental assessment", Meccanica, 50(10), 2525-2535. https://doi.org/10.1007/s11012-015-0166-4.   DOI
30 Kahya, V. (2016), "Buckling analysis of laminated composite and sandwich beams by the finite element method", Compos. Part B: Eng., 91, 126-134, https://doi.org/10.1016/j.compositesb.2016.01.031.   DOI
31 Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64(3-4), 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.   DOI
32 Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136, https://doi.org/10.1016/j.compstruct.2018.01.060.   DOI
33 Lekhnitskii, S.G. (1935), "Strength calculation of composite beams", Vestnik Inzhen I Teknikov, 9, 137-148.
34 Zenkour, A.M. and Rabab, A.A. (2021a), "Hygro-thermo-electromechanical bending analysis of sandwich plates with FG core and piezoelectric faces", Mech. Adv. Mater. Struct., 28(3), 282-294. https://doi.org/10.1080/15376494.2018.1562134.   DOI
35 Zenkour, A.M., El-Shahrany, H.D. (2021b), "Controlled Motion of Viscoelastic Fiber-Reinforced Magnetostrictive Sandwich Plates Resting on Visco-Pasternak Foundation", Mech. Adv. Mat. Struct., https://doi.org/10.1080/15376494.2020.1861395.   DOI
36 Sayyad, A.S. and Ghugal, Y.M. (2021), "A unified five-degree-offreedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., 23(2), 473-506. https://doi.org/10.1177/1099636219840980.   DOI
37 Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.   DOI
38 Sayyad, A.S. and Avhad, P.V. (2019), "On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams", J. Solid Mech., 11(1), 166-180. https://doi.org/10.22034/JSM.2019.664227.   DOI
39 Sayyad, A.S. and Ghugal, Y.M. (2019a), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246. https://doi.org/10.1016/j.compstruct.2019.111246.   DOI
40 Shimpi, R.P. and Ghugal, Y.M. (2001), "A new layerwise trigonometric shear deformation theory for two-layered crossply beams", 61, 1271-1283. https://doi.org/10.1016/S0266-3538(01)00024-0.   DOI
41 Pham, Q.H., Tran,T.T., Tran, V.K., Nguyen, P.C., Thoi, T.N. and Zenkour, A.M. (2021), "Bending and hygro-thermo-mechanical vibration analysisof a functionally graded porous sandwich nanoshell resting on elastic foundation", Mech. Adv. Mater. Struct.,1-21. https://doi.org/10.1080/15376494.2021.1968549.   DOI
42 Zenkour, A.M., El-Shahrany, H.D. (2021c), "Hygrothermal Vibration of a Laminated Sandwich Plate with Magnetostrictive Faces and a Homogeneous Core", Polymer Compos., 42(12), 6672-6687. https://doi.org/10.1002/pc.26331.   DOI
43 Zghal, S., Ataoui, D. and Dammak, F. (2020), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Mach., 50(3), 1012-1029. https://doi.org/10.1080/15397734.2020.1748053.   DOI
44 Zenkour, A.M. (2005a), "A comprehensive analysis on functionally graded sandwich plates: part 1-deflection and stresses", Int J Solids Struct, 42(18-19), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.   DOI
45 Li, W., Ma, H. and Gao. W. (2019), "A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams", Compos. Struct., 221, 110830. https://doi.org/10.1016/j.compstruct.2019.04.002.   DOI
46 Osofero, A.I., Vo, T.P., Nguyen, T.K. and Lee, J. (2016), "Analytical solution for vibration and buckling of functionally graded sandwich beams using various Quasi-3D theories", J. Sandw. Struct. Mater., 18(1), 3-29. https://doi.org/10.1177/1099636215582217.   DOI
47 Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempele, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A, 362, 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.   DOI
48 Aitharaju R.V. and Averill R.C. (1999), "C0 zig-zag finite element for analysis of laminated composite beams", J. Eng. Mech., 125(3), 323-330. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:3(323).   DOI
49 Rabboh, S.A. (2013), "The effect of functionally graded materials into the sandwich beam dynamic performance", Mater. Sci. Appl., 4(11), 751. https://doi.org/10.4236/msa.2013.411095.   DOI
50 Rahmani, O., Khalili, S.M.R., Malekzadeh, K. and Hadavinia, H. (2009), "Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core", Compos. Struct., 91(2), 229-235. https://doi.org/10.1016/j.compstruct.2009.05.007.   DOI
51 Belarbi, M.O., Houari, M.S.A., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D. and Hirane, H. (2021c), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.1137-1149.   DOI
52 Sayyad, A.S., Ghugal, Y.M. and Naik, N.S. (2015), "Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory", Curved Lay. Struct., 2(1), 279-289. https://doi.org/10.1515/cls-2015-0015.   DOI
53 Reddy, J.N. (1990), "On refined theories of composite laminates", Meccanica, 25(4), 230-238. https://doi.org/10.1007/BF01559685.   DOI
54 Belarbi, M.O., Khechai, B.A.A., Houari, M.S.A., Garg, A., Hirane, H. and Chalak, H.D. (2021a), "Finite element bending analysis of symmetric and non-symmetric functionally graded sandwich beams using a novel parabolic shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0(0), 1-13. https://doi.org/10.1177/14644207211005096.   DOI
55 Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19 (3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.   DOI
56 Brischetto, S. (2009), "Classical and mixed advanced models for sandwich plates embedding functionally graded cores", J. Mech. Mater. Struct., 4(1), 13-33. https://doi.org/10.2140/jomms.2009.4.13.   DOI
57 Callioglu, H., Demir, E., Yilmaz, Y. and Sayer, M. (2013), "Vibration analysis of functionally graded sandwich beam with variable cross-section", Math. Comput. Appl., 18(3), 351-360. https://doi.org/10.3390/mca18030351.   DOI
58 Venkataraman, S. and Sankar, B.V. (2003), "Elasticity solution for stresses in a sandwich beam with functionally graded core", AIAA J., 41(12), 2501-2505. https://doi.org/10.2514/2.6853.   DOI
59 Chakrabarti, A., Chalak, H.D., Ashraf M. and Hamid, A. (2011), "A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core", Compos. Struct., 93(2), 271-279. https://doi.org/10.1016/j.compstruct.2010.08.031.   DOI
60 Chalak, H.D., Chakrabarti, A., Sheikh, A.H. and Iqbal, M.A. (2014), "C0 FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration", Appl. Math. Model., 38(4), 1211-1223. https://doi.org/10.1016/j.apm.2013.08.005   DOI
61 Vo, T.P., Thai, HT., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22e. https://doi.org/10.1016/j.engstruct.2014.01.029.   DOI
62 Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks". Compos. Struct., 83(1), 48-60. https://doi.org/https://doi.org/10.1016/j.compstruct.2007.03.006.   DOI
63 Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117(1), 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.   DOI
64 Daikh, A.A. and Zenkour, A.M. (2019), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express, 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.   DOI
65 Garg, A., Chalak, H.D. and Chakrabarti, A. (2020a), "Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects", Mech. Based Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2020.1814157.   DOI
66 Trinh, L.C., Vo, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010.   DOI
67 Vo, T.P. Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B: Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.   DOI
68 Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020b), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/SCS.2020.36.6.643.   DOI
69 Daouadji, T.H., Henni, A.H., Tounsi, A. and Abbes, A.B.E. (2013), "Elasticity solution of a cantilever functionally graded beam", Appl. Compos. Mater., 20(1), 1-15. https://doi.org/10.1007/s10443-011-9243-6.   DOI
70 Garg, A. and Chalak, H.D. (2019b), "Efficient 2D C 0 FE based HOZT for analysis of singly curved laminated composite shell structures under point load", J. Phys. Confer. Ser., 1240, 012014. https://doi.org/10.1088/1742-6596/1240/1/012014.   DOI
71 Garg, A. and Chalak, H.D. (2019a), "A Review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin-Wall. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.   DOI
72 Garg, A. and Chalak, H.D. (2020a), "Analysis of non-skew and skew laminated composite and sandwich plates under hygrothermo-mechanical conditions including transverse stress variations", J. Sandw. Struct. Mater., 109963622093278. https://doi.org/10.1177/1099636220932782.   DOI
73 Yarasca, J., Mantari, J. L. and Arciniega, R. A. (2016), "Hermitelagrangian finite element formulation to study functionally graded sandwich beams", Composite Structures, 140, 567-81. https://doi.org/10.1016/j.compstruct.2016.01.015.   DOI
74 Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M. and Sahoo, R. (2021), "Estimation of carbon nanotubes and their applications as reinforcing composite materials-an engineering review", Compos. Struct., 272, 114234.   DOI
75 Garg, A. Chalak, H.D. and Chakrabarti, A. (2020b), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.   DOI
76 Yazdani, R., Mohammadimehr, M., Zenkour, A., M. (2019), "Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings", Steel Compos Struct, 33(1), 93-109. https://doi.org/10.12989/scs.2019.33.1.093.   DOI
77 Yildirim, S. (2020), "Free vibration analysis of sandwich beams with functionally- graded-cores by complementary functions method", AIAA J., 109, https://doi.org/10.2514/1.J059587.   DOI
78 Zenkour, A.M. (2005b), "A comprehensive analysis on functionally graded sandwich plates: part 2-buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.   DOI
79 Garg, A., Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2021), "Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams", Mech. Adv. Mater. Struct., 1-23. https://doi.org/10.1080/15376494.2021.1931993.   DOI
80 Garg, A. and Chalak, H.D. (2021a), "Novel higher-order zigzag theory for analysis of laminated sandwich beams", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235(1), 176-194. https://doi.org/10.1177/1464420720957045.   DOI
81 Kahya, V. and Turan. M. (2017), "Bending of laminated composite beams by a multi-layer finite element based on a higher-order theory", Acta Physica Polonica A, 132(3), 473-475, https://doi:10.12693/APhysPolA.132.473.   DOI
82 Kapuria S., Dumir P.C. and Ahmed A. (2004c), "Efficient coupled zigzag theory for hybrid piezoelectric beams for thermoelectric load", AIAA J., 42(2), 383-394. https://doi.org/10.2514/1.1748.   DOI
83 Kahya, V. and Turan. M. (2018a), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. Part B: Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.   DOI
84 Kapuria, S., Ahmed, A. and Dumir, P.C. (2004a), "Static and dynamic thermo-electro-mechanical analysis of angle-ply hybrid piezoelectric beams using an efficient coupled zigzag theory", Compos. Sci. Technol., 64(16), 2463-2475. https://doi.org/10.1016/j.compscitech.2004.05.012.   DOI
85 Kapuria, S., Dumir, P.C. and Ahmed, A. (2003), "An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading", Int. J. Solids Struct., 40(24), 6613-6631. https://doi.org/10.1016/j.ijsolstr.2003.08.014.   DOI
86 Karamanli, A. and Vo, T.P. (2021), "Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter", Appl. Math. Model., 91, 723-748, https://doi.org/10.1016/j.apm.2020.09.058.   DOI
87 Apetre, N.A., Sankar, B.V. and Ambur, D.R. (2008), "Analytical modeling of sandwich beams with functionally graded core", J. Sandw. Struct. Mater., 10(1), 53-74. https://doi.org/10.1177/1099636207081111.   DOI
88 Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279.   DOI
89 Daikh, A.A., Guerroudj, M., El Adjrami, M. and Megueni, A. (2019b), "Thermal Buckling of Functionally Graded Sandwich Beams", Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/amr.1156.43.   DOI
90 Belarbi, M.O., Zenkour, A.M., Tati, A., Salami, S.J., Khechai, A. and Houari, M.S.A. (2021b), "An efficient eight-node quadrilateral element for free vibration analysis of multilayer sandwich plates", Int. J. Numer. Meth. Eng., 122(9), 2360-2387 https://doi.org/10.1002/nme.6624.   DOI
91 Daikh, A.A., Bensaid, I. and Zenkour, A.M. (2020), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Eng. Res. Express, 2(1), 015006. https://doi.org/10.1088/2631-8695/ab638c.   DOI
92 Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2022), "Analysis of axially temperaturedependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38(3), 2533-2554. https://doi.org/10.1007/s00366-021-01413-8.   DOI
93 Hoai, C.T., Tu, T.M., Duc, D.M. and Hung, T.Q. (2020), "Static flexural analysis of sandwich beam with Functionally Graded Face Sheets and Porous Core via point interpolation meshfree method based on polynomial basic function", Arch. Appl. Mech., 91(3), 933-947. https://doi.org/10.1007/s00419-020-01797-x.   DOI