• Title/Summary/Keyword: finite element solutions

Search Result 1,073, Processing Time 0.027 seconds

AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.257-270
    • /
    • 2018
  • An extrapolated Crank-Nicolson characteristic finite element method is introduced for approximate solutions of nonlinear Sobolev equations with a convection term. And we obtain the higher order of convergence for approximate solutions in the temporal and the spatial directions with respect to $L^2$ norm.

QUADRATIC B-SPLINE FINITE ELEMENT METHOD FOR THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION

  • Yin, Yong-Xue;Piao, Guang-Ri
    • East Asian mathematical journal
    • /
    • v.29 no.5
    • /
    • pp.503-510
    • /
    • 2013
  • A quadratic B-spline finite element method for the spatial variable combined with a Newton method for the time variable is proposed to approximate a solution of Benjamin-Bona-Mahony-Burgers (BBMB) equation. Two examples were considered to show the efficiency of the proposed scheme. The numerical solutions obtained for various viscosity were compared with the exact solutions. The numerical results show that the scheme is efficient and feasible.

FINITE ELEMENT GALERKIN SOLUTIONS FOR THE STRONGLY DAMPED EXTENSIBLE BEAM EQUATIONS

  • Choo, S.M.;Chung, S.K.;Kannan, R.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.27-43
    • /
    • 2002
  • Finite element Galerkin solutions for the strongly damped extensible beam equations are considered. The semidiscrete scheme and a fully discrete time Galerkin method are studied and the corresponding stability and error estimates are obtained. Ratios of numerical convergence are given.

Deflection and Stress Distributions of a Circular Plate under the Constant Pressure with respect to the Element types (균등 압력이 부과된 원형판의 변형에 대한 해석요소의 정확성 비교)

  • Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • The analysis of circular plates under the constant pressure are simplified as the loading conditions of the circular manhole. The theoretical solution of circular plates with respect to the constant pressures are derived by using the governing equation of plate deflection. The deflection and the radial stress distributions were calculated by the theory. Finite element solutions were conducted with respect to the element types of the continuum elements. The most accurate element was selected by comparisons of the theoretical solutions and simulated solutions. The C3D8I element type in brick-type continuum elements gave in a good accordance with the theoretical solutions.

Analysis of composite plates using various plate theories -Part 2: Finite element model and numerical results

  • Bose, P.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.727-746
    • /
    • 1998
  • Finite element models and numerical results are presented for bending and natural vibration using the unified third-order plate theory developed in Part 1 of this paper. The unified third-order theory contains the classical, first-order, and other third-order plate theories as special cases. Analytical solutions are developed using the Navier and L$\acute{e}$vy solution procedures (see Part 1 of the paper). Displacement finite element models of the unified third-order theory are developed herein. The finite element models are based on $C^0$ interpolation of the inplane displacements and rotation functions and $C^1$ interpolation of the transverse deflection. Numerical results of bending and natural vibration are presented to evaluate the accuracy of various plate theories.

Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming (체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰)

  • Joun, M.S.;Moon, H.K.;Hwang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF

Finite Element Analysis Using an Analytical Solution (해석해를 이용한 유한 요소 해석법)

  • Huh, Young-Woo;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.458-463
    • /
    • 2000
  • The mechanical structures generally have discontinuous parts such as the cracks, notches and holes owing to various reasons. In this paper, in order to analyze effectively these singularity problems using the finite element method, a mixed analysis method which an analytical solution and finite element solutions are simultaneously used is newly proposed. As the analytical solution is used in the singularity region and the finite element solutions are used in the remaining regions except this singular zone, this analysis method reasonably provides for the numerical solution of a singularity problem. Through various numerical examples, it is shown that the proposed analysis method is very convenient and gives comparatively accurate solution.

  • PDF

Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments

  • Wu, C.T.;Hu, Wei
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.83-105
    • /
    • 2013
  • In this paper, a multi-scale meshfree-enriched finite element formulation is presented for the analysis of acoustic wave propagation problem. The scale splitting in this formulation is based on the Variational Multi-scale (VMS) method. While the standard finite element polynomials are used to represent the coarse scales, the approximation of fine-scale solution is defined globally using the meshfree enrichments generated from the Generalized Meshfree (GMF) approximation. The resultant fine-scale approximations satisfy the homogenous Dirichlet boundary conditions and behave as the "global residual-free" bubbles for the enrichments in the oscillatory type of Helmholtz solutions. Numerical examples in one dimension and two dimensional cases are analyzed to demonstrate the accuracy of the present formulation and comparison is made to the analytical and two finite element solutions.

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.