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AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC

FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV

EQUATIONS†

MI RAY OHM AND JUN YONG SHIN ∗

Abstract. An extrapolated Crank-Nicolson characteristic finite element
method is introduced for approximate solutions of nonlinear Sobolev equa-

tions with a convection term. And we obtain the higher order of conver-

gence for approximate solutions in the temporal and the spatial directions
with respect to L2 norm.
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1. Introduction

In this paper, we will consider a nonlinear Sobolev equation with a convection
term: find u(x , t) such that

c(u)ut + d(u) · ∇u−∇ · (a(u)∇u)−∇ · (b(u)∇ut)
= f(x , t, u), in Ω× (0, T ],

u(x , t) = 0, on ∂Ω× (0, T ],

u(x , 0) = u0(x ), in Ω,

(1)

where Ω ⊂ Rm, 1 ≤ m ≤ 3, is a bounded convex domain with boundary ∂Ω,
0 < T < ∞, and c,d , a, b and f are given functions. For the existence, unique-
ness, regularity results, and physical applications of Sobolev equations, refer to
[2, 3, 4, 21, 24] and the papers cited therein.

For Sobolev equations with no convection term, many numerical techniques
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such as classical finite element methods [1, 6, 10, 11, 12] or least-squares meth-
ods [9, 18, 19, 25, 26] or mixed finite element methods [8] or discontinuous finite
element methods [13, 14, 22, 23] are used. However, in many situations, the
convection term is used to describe the convection dominated diffusion. And a
characteristic method is used to treat both the time derivative term and the con-
vection term effectively. This method performs well for convection dominated
diffusion problems as shown in [5, 7]. Gu in [7] and Shi et al [20] introduce a
characteristic finite element method for a Sobolev equation and establish the
higher order convergence in the space variable and the first order convergence in
the time variable for approximate solutions. However the first order convergence
in the time variable makes the higher order convergence in the space variable
worse. So, Ohm and Shin in [15, 17] use a Crank-Nicolson or an extrapolated
Crank-Nicolson characteristic finite element method for a Sobolev equation to
obtain the higher order of convergence both in the space variable and in the
time variable with respect to L2 norm when the given functions c(·) and d(·)
depend only on x . Ohm and Shin [16] introduce a Crank-Nicolson characteristic
finite element method to construct approximate solutions of a nonlinear Sobolev
equation with a convection term and establish the higher order of convergence
in the time variable as well as in the space variable with respect to L2 norm,
which extend previous result [15] to the nonlinear Sobolev equation.

In this paper, we adopt an extrapolated Crank-Nicolson characteristic finite
element method to construct approximate solutions of a nonlinear Sobolev equa-
tion with a convection term and establish the higher order of convergence in the
time variable as well as in the space variable with respect to L2 norm, which
extends our previous result [17] to the nonlinear Sobolev equation. This paper
is composed of four main sections. In Section 2, the smoothness assumptions for
u(x , t), the conditions for the given functions, and basic notations are described.
In Section 3, finite element spaces and basic approximation properties are given.
In Section 4, we construct Crank-Nicolson characteristic finite element approx-
imations of u(x , t) and establish the higher order of convergence in L2 and H1

normed spaces.

2. Assumptions and notations

Throughout this paper, let W s,p(Ω) be the Sobolev space on Ω with its usual
norm ‖ · ‖s,p for s ≥ 0 and 1 ≤ p ≤ ∞. When p = 2, we denote Hs(Ω) ≡
W s,2(Ω), L2(Ω) ≡ H0(Ω), and ‖ · ‖s ≡ ‖ · ‖s,2. And we use ‖ · ‖ ≡ ‖ · ‖0 and
‖ ·‖∞ ≡ ‖·‖0,∞. Let H s(Ω) = {w = (w1, w2, . . . , wm) | wi ∈ Hs(Ω), 1 ≤ i ≤ m}

be the Sobolev space on Ω with its usual norm ‖w‖2s =
m∑
i=1

‖wi‖2s and H1
0 (Ω) =

{w ∈ H1(Ω) | w(x ) = 0 on ∂Ω}. For a given Banach space X and t1, t2 ∈ [0, T ],
we introduce Sobolev spaces with the corresponding norms:

Ws,p(t1, t2;X) =
{
w(x , t) | ‖∂

βw

∂tβ
(·, t)‖X ∈ Lp(t1, t2), 0 ≤ β ≤ s

}
,
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where

‖w‖Ws,p(t1,t2;X) =


(∑s

β=0

∫ t2
t1
‖∂

βw
∂tβ

(·, t)‖pXdt
)1/p

, 1 ≤ p <∞,

max0≤β≤s esssupt∈(t1,t2)‖∂
βw
∂tβ

(·, t)‖X , p =∞.

We simply denote Lp(X) ≡W0,p(0, T ;X) and Ws,p(X) ≡Ws,p(0, T ;X).
Assume that c(p),d(p) = (d1(p), d2(p), . . . , dm(p))T , a(p), b(p) and f(x , t, p)

satisfy

(A1) There exist constants c∗, c
∗, d∗, a∗, a

∗, b∗, and b∗ such that 0 < c∗ ≤
c(p) ≤ c∗, 0 < |d(p)| ≤ d∗, 0 < a∗ ≤ a(p) ≤ a∗, 0 < b∗ ≤ b(p) ≤ b∗, for

all p ∈ R, where |d(p)| =
m∑
i=1

d2
i (p).

(A2) ap(p), app(p), appp(p), bp(p), bpp(p), and bppp(p) are bounded.
(A3) f(x , t, p) is locally Lipschitz continuous in the third variable p, i.e. if

| p∗ − p | ≤ K̃ then |f(x , t, p∗) − f(x , t, p)| ≤ K(p, K̃)| p∗ − p |. And
a(p) and b(p) are locally Lipschitz continuous.

For each (x , t), let ν = ν(x , t) be the unit vector such that ∂u
∂ν = c(u)

ψ(u)
∂u
∂t + d(u)

ψ(u) ·
∇u, where ψ(u) = [c(u)2 + |d(u)|2]

1
2 . Then we can rewrite the Sobolev equation

(1) as follows: find u(x , t) such that
ψ(u) ∂u∂ν −∇ · (a(u)∇u)−∇ · (b(u)∇ut) = f(x , t, u), in Ω× (0, T ],

u(x , t) = 0, on ∂Ω× (0, T ],

u(x , 0) = u0(x ), in Ω.

(2)

And the variational formulation of the equation (2) is given as follows: find
u(x , t) ∈ H1

0 (Ω) such that
(ψ(u) ∂u∂ν , τ) + (a(u)∇u,∇τ) + (b(u)∇ut,∇τ)

= (f(x, t, u), τ), ∀τ ∈ H1
0 (Ω),

u(x , 0) = u0(x ).

(3)

3. Finite element spaces and an elliptic projection

For h > 0, let {Srh} be a family of finite dimensional subspaces of H1
0 (Ω)

satisfying the following approximation and inverse properties:
(approximation property) For φ ∈ H1

0 (Ω) ∩W s,p(Ω), there exist a positive con-
stant K1, independent of h, φ, and r, and a sequence Phφ ∈ Srh such that for
any 0 ≤ q ≤ s and 1 ≤ p ≤ ∞

‖φ− Phφ‖q,p ≤ K1h
µ−q‖φ‖s,p

where µ = min(r + 1, s).
(inverse property) There exist a positive constant K2 independent of h and r,
such that

‖ϕ‖1 ≤ K2h
−1‖ϕ‖ and ‖ϕ‖∞ ≤ K2h

−m2 ‖ϕ‖, ∀ϕ ∈ Srh.
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And bilinear forms A and B are defined on H1
0 (Ω)×H1

0 (Ω) as follows:

A(u : v, w) = (a(u)∇v,∇w), B(u : v, w) = (b(u)∇v,∇w). (4)

By following the idea in [10, 14] and the assumption (A1), a differentiable func-
tion ũ : [0, T ]→ Srh can be defined as follows{

A(u : u− ũ, χ) +B(u : ut − ũt, χ) = 0, ∀χ ∈ Srh,
(ũ(0), χ) = (u0, χ), ∀χ ∈ Srh.

(5)

Now letting η = u − ũ, we obtain some estimates for η, ηt, ηtt, and ηttt whose
proofs can be found in [15, 17].

Lemma 3.1. Let u0 ∈ Hs(Ω), ut, utt, uttt ∈ Hs(Ω), and ut ∈ L2(Hs(Ω)). Then
there exists a constant K, independent of h, such that

(i) ‖η‖+ h‖η‖1 ≤ Khµ(‖ut‖L2(Hs(Ω)) + ‖u0‖s),
(ii) ‖ηt‖+ h‖ηt‖1 ≤ Khµ(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s),
(iii) ‖ηtt‖1 ≤ Khµ−1(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s + ‖utt‖s),
(iv) ‖ηttt‖1 ≤ Khµ−1(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s + ‖utt‖s + ‖uttt‖s),

where µ = min(r + 1, s) and s ≥ 2.

Lemma 3.2. Let u0 ∈ Hs(Ω), u, ut, utt, uttt ∈ L∞(Hs(Ω)) ∩ L∞(W 1,∞ (Ω)),
and ut ∈ L2(Hs(Ω)). If µ ≥ 1 + m

2 , then there exists a constant K, independent
of h, such that

max{‖η‖∞, ‖∇η‖∞, ‖∇ηt‖∞, ‖∇ηtt‖∞, ‖∇ηttt‖∞} ≤ K,

where µ = min(r + 1, s).

Throughout this paper, we use a generic positive constant K depending only
on the domain Ω, K̃, and u(x , t) but independent of the discretization magni-
tudes of the space variable and the time variable. Therefore any K’s in the
different places do not need to be equal.

4. The optimal L∞(L2) and L∞(H1) error estimates

Let N be a positive integer, ∆t = T/N and tn = n∆t, for 0 ≤ n ≤ N . Denote

uj = u(x, tj), uj−
1
2 = 1

2 (uj + uj−1), tj−
1
2 = 1

2 (tj + tj−1), d̃(·) = d(·)/c(·). From
(3) and the definitions of bilinear forms A and B, we have(

ψ(u(tn−
1
2 ))

∂u(tn−
1
2 )

∂ν
, χ
)

+A(u(tn−
1
2 ) : u(tn−

1
2 ), χ) (6)

+B(u(tn−
1
2 ) : ut(t

n− 1
2 ), χ) = (f(u(tn−

1
2 )), χ), ∀χ ∈ Srh,

where f(u(tn−
1
2 )) = f(x , tn−

1
2 , u(tn−

1
2 )) and so, we get(

c(u(tn−
1
2 ))

ˇ̌un − ˆ̂un−1

∆t
, χ
)

+A(u(tn−
1
2 ) : un−

1
2 , χ) (7)
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+B(u(tn−
1
2 ) :

un − un−1

∆t
, χ)

= (f(u(tn−
1
2 )), χ) +Q1 +Q2 +Q3, ∀χ ∈ Srh,

where ˇ̌un = u(ˇ̌x , tn), ˆ̂un−1 = u(ˆ̂x , tn−1), ˇ̌x = x + 1
2 d̃(u(tn−

1
2 ))∆t, ˆ̂x = x −

1
2 d̃(u(tn−

1
2 ))∆t, Q1 = (c(u(tn−

1
2 ))

ˇ̌un−ˆ̂un−1

∆t − ψ(u(tn−
1
2 ))∂u(tn−

1
2 )

∂ν , χ) , Q2 =

A(u(tn−
1
2 ) : un−

1
2−u(tn−

1
2 ), χ), and Q3 = B(u(tn−

1
2 ) : un−un−1

∆t −ut(tn−
1
2 ), χ).

Now an extrapolated Crank-Nicolson characteristic finite element scheme for
(1) is given as follows: Find {unh} ∈ Srh such that(

c(Eunh)
ŭnh − ū

n−1
h

∆t
, χ
)

+A(Eunh : u
n− 1

2

h , χ) +B(Eunh :
unh − u

n−1
h

∆t
, χ) (8)

= (f(Eunh), χ), ∀χ ∈ Srh, n = 2, . . . , N,(
c(u

1
2

h )
ǔ1
h − û0

h

∆t
, χ
)

+A(u
1
2

h : u
1
2

h , χ) +B(u
1
2

h :
u1
h − u0

h

∆t
, χ) (9)

= (f(u
1
2

h ), χ), ∀χ ∈ Srh,
u0
h(x ) = ũ(x , 0), (10)

where Eunh = 3
2u

n−1
h − 1

2u
n−2
h , ŭnh = unh(x̆ ), ūn−1

h = un−1
h (x̄ ), x̆ = x +

1
2 d̃(Eunh)∆t, x̄ = x− 1

2 d̃(Eunh)∆t, ǔ1
h = u1

h(x̌ ), û0
h = u0

h(x̂ ), x̌ = x + 1
2 d̃(u

1
2

h )∆t,

x̂ = x − 1
2 d̃(u

1
2

h )∆t , and u
1
2

h = 1
2 (u1

h + u0
h).

For our analysis of the convergence, we denote ξn = unh − ũn and ∂tξ
n =

ξn−ξn−1

∆t . Since the equation (9) is the same as one in [16] for n = 1, we have
the following theorem whose proof can be found in [16].

Theorem 4.1. Let u and {unh} be solutions of (3) and (8)-(10), respectively. In
addition to the assumptions of Lemma 3.2, if µ ≥ 1 + m

2 , u ∈ L
∞(H3(Ω)), and

∆t = O(h), then

‖∇ξ1‖2 + ∆t(‖∂tξ1‖2 + ‖∇∂tξ1‖2) ≤ K∆t(h2µ + (∆t)4),

where µ = min(r + 1, s).

Theorem 4.2. Under the same assumptions of Theorem 4.1, we havee

‖∇ξ2‖2 + ∆t(‖∂tξ2‖2 + ‖∇∂tξ2‖2) ≤ K∆t(h2µ + (∆t)4),

where µ = min(r + 1, s).

Proof. From (7) and (8) with n = 2 and χ = ∂tξ
2, we get(

c(Eu2
h)∂tξ

2, ∂tξ
2
)

+A(Eu2
h : ξ

3
2 , ∂tξ

2) +B(Eu2
h : ∂tξ

2, ∂tξ
2)

=
(
c(Eu2

h)
ξ2 − ξ̆2

∆t
, ∂tξ

2
)

+
(
c(Eu2

h)
ξ̄1 − ξ1

∆t
, ∂tξ

2
)

−
(
c(Eu2

h)
η2 − η̆2

∆t
, ∂tξ

2
)

+
(
c(Eu2

h)
η2 − η1

∆t
, ∂tξ

2
)
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−
(
c(Eu2

h)
η̄1 − η1

∆t
, ∂tξ

2
)

+A(Eu2
h : η

3
2 , ∂tξ

2)

+
[
A(u(t

3
2 ) : u

3
2 , ∂tξ

2)−A(Eu2
h : u

3
2 , ∂tξ

2)
]

+B(Eu2
h : ∂tη

2, ∂tξ
2)

+
[
B(u(t

3
2 ) :

u2 − u1

∆t
, ∂tξ

2)−B(Eu2
h :

u2 − u1

∆t
, ∂tξ

2)
]

+
(
c(Eu2

h)
ˇ̌u2 − ŭ2 − ˆ̂u1 + ū1

∆t
, ∂tξ

2
)

+
(

[c(u(t
3
2 ))− c(Eu2

h)]
ˇ̌u2 − ˆ̂u1

∆t
, ∂tξ

2
)

+ (f(Eu2
h)− f(u(t

3
2 )), ∂tξ

2)−Q1 −Q2 −Q3 =

15∑
i=1

Ii. (11)

Now let L1, L2 and L3 denote three terms of the left-hand side of (11), respec-
tively. First we can estimate L1, L2 and L3 as follows:

L1 = (c(Eu2
h)∂tξ

2, ∂tξ
2) ≥ c∗‖∂tξ2‖2,

L2 = A(Eu2
h : ξ

3
2 , ∂tξ

2)

=
1

2∆t
(‖
√
a(Eu2

h)∇ξ2‖2 − ‖
√
a(Eu2

h)∇ξ1‖2)

≥ 1

2∆t
(a∗‖∇ξ2‖2 − a∗‖∇ξ1‖2)

L3 = B(Eu2
h : ∂tξ

2, ∂tξ
2) ≥ b∗‖∇∂tξ2‖2.

By applying these bounds of L1 ∼ L3 to (11), we get

c∗‖∂tξ2‖2 + b∗‖∇∂tξ2‖2 +
1

2∆t
a∗‖∇ξ2‖2

≤ 1

2∆t
a∗‖∇ξ1‖2 +

15∑
i=1

Ii. (12)

By using the assumption (A1) and Cauchy-Schwartz inequality, we can estimate
I1 ∼ I5 as follows:

I1 ≤ ε‖∂tξ2‖2 +K‖∇ξ2‖2,
I2 ≤ ε‖∂tξ2‖2 +K‖∇ξ1‖2,
I3 ≤ ε(‖∂tξ2‖2 + ‖∇∂tξ2‖2) +K‖η2‖2,
I4 ≤ ε‖∂tξ2‖2 +K‖η2

t ‖2,
I5 ≤ ε(‖∂tξ2‖2 + ‖∇∂tξ2‖2) +K‖η1‖2,
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for an ε > 0. To estimate the sum of I6 and I8, we split it into six terms, by
using (5), as follows:

I6 + I8 =A(Eu2
h : η

3
2 , ∂tξ

2) +B(Eu2
h : ∂tη

2, ∂tξ
2)

=(a(Eu2
h)(∇η 3

2 −∇η(t
3
2 )),∇∂tξ2)

+ ([a(Eu2
h)− a(u(t

3
2 ))]∇η(t

3
2 ),∇∂tξ2)

+ (a(u(t
3
2 ))∇η(t

3
2 ),∇∂tξ2)

+
(
b(Eu2

h)(
∇η2 −∇η1

∆t
−∇ηt(t

3
2 )),∇∂tξ2

)
+ ((b(Eu2

h)− b(u(t
3
2 )))∇ηt(t

3
2 ),∇∂tξ2)

+
(
b(u(t

3
2 ))∇ηt(t

3
2 ),∇∂tξ2

)
≡

6∑
i=1

Ji.

By Taylor expansion and Lemma 3.1, we get

‖∇η 3
2 −∇η(t

3
2 )‖+ ‖∇η

2 −∇η1

∆t
−∇ηt(t

3
2 )‖ ≤ K(∆t)2

and hence

J1 + J4 ≤ ε‖∇∂tξ2‖2 +K(∆t)4.

Note that

‖Eu2
h − u(t

3
2 )‖ = ‖Eu2

h − Eũ2 + Eũ2 − ũ(t
3
2 ) + ũ(t

3
2 )− u(t

3
2 )‖

= ‖Eξ2 +
3

2
ũ1 − 1

2
ũ0 − ũ(t

3
2 )− η(t

3
2 )‖

≤ K(‖ξ1‖+ ‖ξ0‖+ (∆t)2 + ‖η(t
3
2 )‖)

≤ K(‖ξ1‖+ hµ + (∆t)2). (13)

By Lemma 3.2 and (13), we can estimate J2 and J5 as follows:

J2 ≤ ε‖∇∂tξ2‖2 +K(‖ξ1‖2 + h2µ + (∆t)4)

and

J5 ≤ ε‖∇∂tξ2‖2 +K(‖ξ1‖2 + h2µ + (∆t)4).

From (5), it is obvious that J3 + J6 = 0. Therefore, we get

I6 + I8 ≤ 3ε‖∇∂tξ2‖2 +K(‖ξ1‖2 + h2µ + (∆t)4).

Note that by Taylor expansion, we have

ˇ̌u2 − ŭ2 − ˆ̂u1 + ū1

=∆t
[d(u(x , t

3
2 ))(c(Eu2

h)− c(u(x , t
3
2 )))

c(Eu2
h)c(u(x , t

3
2 ))
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+
c(u(x , t

3
2 )(d(u(x , t

3
2 ))− d(Eu2

h))

c(Eu2
h)c(u(x , t

3
2 ))

]
· ∇u(x , t

3
2 ) +O((∆t)3) (14)

and

‖ˇ̌u2 − ˆ̂u1‖∞ ≤ K∆t. (15)

By using (13), (14), and (15), we can estimate I7, I9, I10, I11, and I12 as follows:

I7 ≤ ε‖∇∂tξ2‖2 +K(‖ξ1‖2 + h2µ + (∆t)4),

I9 ≤ ε‖∇∂tξ2‖2 +K(‖ξ1‖2 + h2µ + (∆t)4),

I10 ≤ ε‖∂tξ2‖2 +K(‖ξ1‖2 + h2µ + (∆t)4),

I11 ≤ ε‖∂tξ2‖2 +K(‖ξ1‖2 + h2µ + (∆t)4),

I12 ≤ ε‖∂tξ2‖2 +K(‖ξ1‖2 + h2µ + (∆t)4).

By using Taylor expansion, there exist t1θ ∈ (t
3
2 , t2), t0θ ∈ (t1, t

3
2 ), ˇ̌x θi ∈ (ˇ̌x ,x ),

and ˆ̂x θi ∈ (ˆ̂x ,x ), 1 ≤ i ≤ 3, such that

ψ(u(t
3
2 ))

∂u(t
3
2 )

∂ν
− c(u(t

3
2 ))

ˇ̌u2 − ˆ̂u1

∆t

=− c(u(t
3
2 ))(∆t)2

[ 1

48
d̃

3
· ∇3u(ˇ̌x θ1, t

3
2 ) +

1

16
d̃

2
· ∇2ut(ˇ̌x θ2, t

3
2 )

+
1

16
d̃ · ∇utt(ˇ̌x θ3, t

3
2 ) +

1

48
ˇ̌uttt(t

1
θ)

+
1

48
d̃

3
· ∇3u(ˆ̂x θ1, t

3
2 ) +

1

16
d̃

2
· ∇2ut(ˆ̂x θ2, t

3
2 )

+
1

16
d̃ · ∇utt(ˆ̂x θ3, t

3
2 ) +

1

48
ˆ̂uttt(t

0
θ)
]

(16)

where d j · (∇ju) =
j∑
l=0

(
j
l

)
dj−l1 dl2

∂ju

∂xj−l1 ∂xl2
for j = 1, 2, 3 when m = 2 and we use

similar notations when m = 3. By the regularity of u, (13), (15), and (16), we
have

I13 ≤ ε‖∂tξ2‖2 +K(∆t)4,

I14 ≤ ε‖∇∂tξ2‖2 +K(∆t)4,

I15 ≤ ε‖∇∂tξ2‖2 +K(∆t)4.

Now by applying the upper bounds for I1 ∼ I15 to (12), we get

c∗‖∂tξ2‖2 + b∗‖∇∂tξ2‖2 +
a∗

2∆t
‖∇ξ2‖2

≤ a∗

2∆t
‖∇ξ1‖2 +K(‖ξ1‖2 + ‖∇ξ2‖2 + ‖∇ξ1‖2 + h2µ + (∆t)4)

+ 9ε‖∂tξ2‖2 + 9ε‖∇∂tξ2‖2. (17)
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Thus, by using Theorem 4.1, we have

‖∇ξ2‖2 + ∆t(‖∂tξ2‖2 + ‖∇∂tξ2‖2) ≤ K∆t[h2µ + (∆t)4]

for sufficiently small ε and ∆t. �

Theorem 4.3. Under the same assumptions of Theorem 4.1, we have

max
0≤n≤N

[
‖un − unh‖+ h‖∇(un − unh)‖

]
≤ K(hµ + (∆t)2),

where µ = min(r + 1, s).

Proof. To prove this theorem, we will establish the following statement: There
exist 0 < h̃ < 1 and 0 < ∆̃t < 1 such that

‖∇ξn‖2 + ∆t(‖∂tξn‖2 + ‖∇∂tξn‖2) ≤ K(h2µ + (∆t)4) (18)

for any 0 < h < h̃, 0 < ∆t < ∆̃t and n = 0, 1, . . . , N . Since ξ0 = 0, it is trivial
that (18) holds for n = 0. And by Theorem 4.1 and Theorem 4.2, (18) holds
for n = 1 and n = 2. Now we assume that (18) holds with n ≤ l − 1. Notice
that ‖ξn‖∞ ≤ K, 0 ≤ n ≤ l − 1. We subtract (7) from (8) with 3 ≤ n ≤ l and
χ = ∂tξ

n to get(
c(Eunh)∂tξ

n, ∂tξ
n
)

+A(Eunh : ξn−
1
2 , ∂tξ

n) +B(Eunh : ∂tξ
n, ∂tξ

n)

=
(
c(Eunh)

ξn − ξ̆n

∆t
, ∂tξ

n
)

+
(
c(Eunh)

ξ̄n−1 − ξn−1

∆t
, ∂tξ

n
)

−
(
c(Eunh)

ηn − η̆n

∆t
, ∂tξ

n
)

+
(
c(Eunh)

ηn − ηn−1

∆t
, ∂tξ

n
)

−
(
c(Eunh)

η̄n−1 − ηn−1

∆t
, ∂tξ

n
)

+A(Eunh : ηn−
1
2 , ∂tξ

n)

+
[
A(u(tn−

1
2 ) : un−

1
2 , ∂tξ

n)−A(Eunh : un−
1
2 , ∂tξ

n)
]

+B(Eunh : ∂tη
n, ∂tξ

n)

+
[
B(u(tn−

1
2 ) :

un − un−1

∆t
, ∂tξ

n)−B(Eunh :
un − un−1

∆t
, ∂tξ

n)
]

+
(
c(Eunh)

ˇ̌un − ŭn − ˆ̂un−1 + ūn−1

∆t
, ∂tξ

n
)

+
(

[c(u(tn−
1
2 ))− c(Eunh)]

ˇ̌un − ˆ̂un−1

∆t
, ∂tξ

n
)

+ (f(Eunh)− f(u(tn−
1
2 )), ∂tξ

n)−Q1 −Q2 −Q3 =

15∑
i=1

Ii. (19)

Now let L1, L2 and L3 denote three terms of the left-hand side of (19), respec-
tively. First, we can get the lower bounds of L1, L2 and L3 as follows:

L1 = (c(Eunh)∂tξ
n, ∂tξ

n) ≥ c∗‖∂tξn‖2,
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L2 = A(Eunh : ξn−
1
2 , ∂tξ

n)

≥ 1

2∆t
(‖
√
a(Eunh)∇ξn‖2 − ‖

√
a(Eun−1

h )∇ξn−1‖2)

+
1

2∆t
(‖
√
a(Eun−1

h )∇ξn−1‖2 − ‖
√
a(Eunh)∇ξn−1‖2),

L3 = B(Eunh : ∂tξ
n, ∂tξ

n) ≥ b∗‖∇∂tξn‖2.

By applying these bounds of L1 ∼ L3 to (19), we get

c∗‖∂tξn‖2 + b∗‖∇∂tξn‖2

+
1

2∆t
(‖
√
a(Eunh)∇ξn‖2 − ‖

√
a(Eun−1

h )∇ξn−1‖2)

≤ 1

2∆t
([a(Eunh)− a(Eun−1

h )]∇ξn−1,∇ξn−1) +

15∑
i=1

Ii. (20)

By (18) and the fact that ∆t = O(h), we obtain

‖Eunh − Eun−1
h ‖∞

= ‖E(unh − ũn)− E(un−1
h − ũn−1) + Eũn − Eũn−1‖∞

≤ ∆t
(3

2
‖∂tξn−1‖∞ +

1

2
‖∂tξn−2‖∞

)
+K∆t

≤ K∆t. (21)

Therefore, applying the assumption (A2) and (21) to (20), we have

c∗‖∂tξn‖2 + b∗‖∇∂tξn‖2

+
1

2∆t
(‖
√
a(Eunh)∇ξn‖2 − ‖

√
a(Eun−1

h )∇ξn−1‖2)

≤ K‖∇ξn−1‖2 +

15∑
i=1

Ii. (22)

By using the assumption (A1) and Cauchy-Schwartz inequality, we can get the
following bounds for I1 ∼ I5:

I1 ≤ ε‖∂tξn‖2 +K‖∇ξn‖2,
I2 ≤ ε‖∂tξn‖2 +K‖∇ξn−1‖2,
I3 ≤ ε(‖∂tξn‖2 + ‖∇∂tξn‖2) +K‖ηn‖2,
I4 ≤ ε‖∂tξn‖2 +K‖ηnt ‖2,
I5 ≤ ε(‖∂tξn‖2 + ‖∇∂tξn‖2) +K‖ηn−1‖2,

for an ε > 0. The sum of I6 and I8 can be split into six terms, by using (5), as
follows:

I6 + I8 =(a(Eunh)(∇ηn− 1
2 −∇η(tn−

1
2 )),∇∂tξn)

+ ([a(Eunh)− a(u(tn−
1
2 ))]∇η(tn−

1
2 ),∇∂tξn)
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+ (a(u(tn−
1
2 ))∇η(tn−

1
2 ),∇∂tξn)

+
(
b(Eunh)(

∇ηn −∇ηn−1

∆t
−∇ηt(tn−

1
2 )),∇∂tξn

)
+ ((b(Eunh)− b(u(tn−

1
2 )))∇ηt(tn−

1
2 ),∇∂tξn)

+
(
b(u(tn−

1
2 ))∇ηt(tn−

1
2 ),∇∂tξn

)
≡

6∑
i=1

Ji.

By Taylor expansion and Lemma 3.1, we get

‖∇ηn− 1
2 −∇η(tn−

1
2 )‖+ ‖∇η

n −∇ηn−1

∆t
−∇ηt(tn−

1
2 )‖ ≤ K(∆t)2

and so,

J1 + J4 ≤ ε‖∇∂tξn‖2 +K(∆t)4.

Notice that as in (13)

‖Eunh − u(tn−
1
2 )‖ ≤ K(‖ξn−1‖+ ‖ξn−2‖+ hµ + (∆t)2). (23)

By (23), we get the bounds for J2 and J5 as follows:

J2 ≤ ε‖∇∂tξn‖2 +K(‖ξn−1‖2 + ‖ξn−2‖2 + h2µ + (∆t)4)

and

J5 ≤ ε‖∇∂tξn‖2 +K(‖ξn−1‖2 + ‖ξn−2‖2 + h2µ + (∆t)4).

From (5), it is obvious that J3 + J6 = 0. Therefore, we get

I6 + I8 ≤ 3ε‖∇∂tξ1‖2 +K(‖ξn−1‖2 + ‖ξn−2‖2 + h2µ + (∆t)4).

Note that by using Taylor expansion, we have

ˇ̌un − ŭn − ˆ̂un−1 + ūn−1

=∆t
(d(u(x , tn−

1
2 ))(c(Eunh)− c(u(x , tn−

1
2 )))

c(u(x , tn−
1
2 ))c(Eunh)

+
(d(u(x , tn−

1
2 ))− d(Eunh))c(u(x , tn−

1
2 ))

c(u(x , tn−
1
2 ))c(Eunh)

)
· ∇u(x , tn−

1
2 )

+O((∆t)3) (24)

and

‖ˇ̌un − ˆ̂un−1‖∞ ≤ K∆t. (25)

By using (23), (24), and (25), we can get the bounds for I7, I9, I10, I11, and I12

as follows:

I7 ≤ ε‖∇∂tξn‖2 +K(‖ξn−1‖2 + ‖ξn−2‖2 + h2µ + (∆t)4),

I9 ≤ ε‖∇∂tξn‖2 +K(‖ξn−1‖2 + ‖ξn−2‖2 + h2µ + (∆t)4),
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I10 ≤ ε‖∂tξn‖2 +K(‖ξn−1‖2 + ‖ξn−2‖2 + h2µ + (∆t)4),

I11 ≤ ε‖∂tξn‖2 +K(‖ξn−1‖2 + ‖ξn−2‖2 + h2µ + (∆t)4),

I12 ≤ ε‖∂tξn‖2 +K(‖ξn−1‖2 + ‖ξn−2‖2 + h2µ + (∆t)4).

By similar argument as in (16), there exist t1θ ∈ (tn−
1
2 , tn), t0θ ∈ (tn−1, tn−

1
2 ),

ˇ̌x θi ∈ (ˇ̌x ,x ), and ˆ̂x θi ∈ (ˆ̂x ,x ), 1 ≤ i ≤ 3, such that

ψ(u(tn−
1
2 ))

∂u(tn−
1
2 )

∂ν
− c(u(tn−

1
2 ))

ˇ̌un − ˆ̂un−1

∆t

=− c(u(tn−
1
2 ))(∆t)2

[ 1

48
d̃

3
· ∇3u(ˇ̌x θ1, t

n− 1
2 ) +

1

16
d̃

2
· ∇2ut(ˇ̌x θ2, t

n− 1
2 )

+
1

16
d̃ · ∇utt(ˇ̌x θ3, t

n− 1
2 ) +

1

48
ˇ̌uttt(t

1
θ)

+
1

48
d̃

3
· ∇3u(ˆ̂x θ1, t

n− 1
2 ) +

1

16
d̃

2
· ∇2ut(ˆ̂x θ2, t

n− 1
2 )

+
1

16
d̃ · ∇utt(ˆ̂x θ3, t

n− 1
2 ) +

1

48
ˆ̂uttt(t

0
θ)
]
, (26)

where d j · (∇ju) =
j∑
l=0

(
j
l

)
dj−l1 dl2

∂ju

∂xj−l1 ∂xl2
for j = 1, 2, 3 when m = 2 and we use

similar notations when m = 3. By the regularity of u, (23), (25), and (26), we
get

I13 ≤ ε‖∂tξn‖2 +K(∆t)4,

I14 ≤ ε‖∇∂tξn‖2 +K(∆t)4,

I15 ≤ ε‖∇∂tξn‖2 +K(∆t)4.

Now applying the estimates for I1 ∼ I15 to (20), we obtain

c∗‖∂tξn‖2 + b∗‖∇∂tξn‖2

+
1

2∆t
(‖
√
a(Eunh)∇ξn‖2 − ‖

√
a(Eun−1

h )∇ξn−1‖2)

≤ K(‖ξn−1‖2 + ‖ξn−2‖2 + ‖∇ξn‖2 + ‖∇ξn−1‖2 + h2µ + (∆t)4)

+ 9ε‖∂tξn‖2 + 9ε‖∇∂tξn‖2. (27)

Hence, by Poincare’s inequality, (27) can be estimated as follows:

∆t[c∗‖∂tξn‖2 + b∗‖∇∂tξn‖2]

+ (‖
√
a(Eunh)∇ξn‖2 − ‖

√
a(Eun−1

h )∇ξn−1‖2)

≤ K∆t(‖∇ξn‖2 + ‖∇ξn−1‖2 + ‖∇ξn−2‖2 + h2µ + (∆t)4). (28)

for sufficiently small ε. Now we add both sides of (28) from n = 3 to l to get

∆t

l∑
n=3

[c∗‖∂tξn‖2 + b∗‖∇∂tξn‖2] + ‖
√
a(Eulh)∇ξl‖2
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≤K∆t

l∑
n=1

(‖∇ξn‖2 + h2µ + (∆t)4) +K‖∇ξ2‖2.

So, by Theorem 4.2, we have

‖∇ξl‖2 + ∆t{‖∂tξl‖2 + ‖∇∂tξl‖2}

≤K
[
∆t

l−1∑
n=1

{‖∇ξn‖2 + ∆t(‖∂tξn‖2 + ‖∇∂tξn‖2)}+K∆t

l∑
n=1

{h2µ + (∆t)4}
]
,

for sufficiently small ∆t. Therefore, by Gronwall’s inequality, we have

‖∇ξl‖2 + ∆t{‖∂tξl‖2 + ‖∇∂tξl‖2} ≤ K[h2µ + (∆t)4],

which completes the proof of the statement (18) by the mathematical induction.
By using the triangle inequality and the Poincare’s inequality, we finally have
‖ul − ulh‖ ≤ K(hµ + (∆t)2) and ‖∇(ul − ulh)‖ ≤ K(hµ−1 + (∆t)2). Thus the
proof of this theorem is completed. �
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