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ABSTRACT. The Richards equation for water movement in unsaturated soil is highly nonlinear
partial differential equations which are not solvable analytically unless unrealistic and oversim-
plifying assumptions are made regarding the attributes, dynamics, and properties of the physi-
cal systems. Therefore, conventionally, numerical solutions are the only feasible procedures to
model flow in partially saturated porous media. The standard Finite element numerical tech-
nique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit
forward method, any other Euler time-marching algorithm generates nonlinear algebraic equa-
tions which should be solved using iterative procedures such as Newton and Picard iterations.
In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative
techniques were evaluated to determine the most efficient method to solve the Richards equa-
tion with finite element model. The accuracy and computational efficiency of the scheme and of
the Picard and Newton models are assessed for three test problems simulating one-dimensional
flow processes in unsaturated porous media. Results demonstrated that, the conventional mass
distributed finite element method suffers from numerical oscillations at the wetting front, espe-
cially for very dry initial conditions. Even though small mesh sizes are applied for all the test
problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect
response due to the highly nonlinear properties of water flow in unsaturated soil and cause nu-
merical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics
solutions for these problems are evaded by using the mass-lumped finite element method.

1. INTRODUCTION

The Richards equation is the governing equation for movement of water flow in partially
saturated porous media, contains nonlinearities arising from pressure head dependencies in
soil moisture and hydraulic conductivity. It is practically impossible to solve the equation
analytically in unsaturated soil profiles with complex initial boundary conditions due to its
highly nonlinear nature. Therefore numerical approximations are typically used to solve the
unsaturated flow equations. The standard approximations that are applied to the spatial domain
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are the finite difference and finite element methods are two popular schemes [1, 2]. Variations
of the standard finite difference and finite element methods, such as the sub domain finite
element method have also been successfully used to solve these problems [3]. The choice of
using either finite difference or finite element method for the solution of variably saturated
flow problems is largely personal and promoters of a particular method can easily support the
strengths of their preferred solution approach. This can cause problems when a choice has to
be made between these approaches, as it is difficult to independently evaluate the methods in a
substantial technique.

Several studies have explored the finite element solution [3, 4, 5, 6, 7]. Discussion about
efficiency of mass types, element orders, and matrix solution methods, as well as influence of
methods of numerical integration for the Richards equation are found few of these studies. The
main reason of this is the consistent (distributed) mass scheme with high order elements has
been typically accepted to be superior for solving complex nonlinear physical problems. Pre-
vious studies established that the numerical solution with consistent mass formulation shows
oscillation [3, 5, 4, 6] but they are not explained about the reason of oscillations and methods
how to avoid the oscillations. Numerical oscillations is a significant factor to diverge the so-
lution of Richards equation when simulate a sharp wetting front entering a dry soil profile. To
overcome this difficulty, it is necessary to reduce the size of the element and time step size.
But the reduction in element size could drastically increase the simulation time, as a result the
numerical method becomes less attractive.

Numerical solution using pressure based formulation coupled with backward Euler time
discretization is shown to produce unacceptably large mass balance errors for many example
calculations. It is true for both finite difference and finite element approximation in space,
although finite elements are generally inferior to finite differences. Because use of pressure
head formulation with a simple time-stepping method is common, these findings appear to
have significant practical implications. Almost, all unsaturated flow simulations use either the
head-based or the moisture content-based formulation of Richards equation. A variety of finite
difference and finite element solution techniques have been used with each of these equation
forms [3, 8, 9, 10, 11]. Numerical algorithm based on mixed form of Richards equation have
been proposed and mass balance errors occur in standard head-based numerical solution [12].

Fully implicit backward Euler time approximation applied to the mixed form of Richards
equation is mass conserving solution procedure for the unsaturated flow equation. Proper ex-
pansion of the time derivative produces a simple computational algorithm that is perfectly mass
conservative for numerical approximation that preserves spatial symmetry. Thus the finite dif-
ference and finite element approximations using this mixed formulation are perfectly mass
conservative. This approach is show to be superior to the standard head-based approximations
while requiring no more computational effort. However conservation of mass is shown to be
inadequate to guarantee good numerical solutions. For infiltration into dry soils, finite element
approximations produce oscillatory solutions even while conserving mass. It is shown that di-
agonalization of the time matrix, which occurs naturally in finite difference approximations,
is necessary and sufficient to guarantee oscillations free solutions. Mass conserving solution
procedure is presented by the use of modified definition of capacity term to force global mass
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balance and illustrated the importance of mass lumping in finite element solutions to unsatu-
rated flow problems [5]. The significance of mass lumping is also shown and report good finite
element solutions without mass lumping [3, 4, 10, 11]. Most of the studies are used a one-step
Euler time-marching algorithm with the head-based version of Richards equation.

For stability reasons an implicit time discretization requiring evaluation of the nonlinear co-
efficients at the current time level, is generally used to solve the equation numerically. Newton
and Picard iterative schemes are commonly used to linearize the resulting discrete system of
equations, with the Picard scheme being the more popular of the two [3, 11, 13, 14, 15]. Picard
method is the most intuitive linearization of Richards equation, computationally inexpensive
on a per-iteration basis, and preserves symmetry of the discrete system of equations. However,
some studies shown experimentally, the method may diverge under certain conditions [7, 10]
and verified theoretically [16].

On the other hand, the Newton scheme, which is quadratically convergent [7, 17, 18] yields
complex non symmetric system matrices and expensive than Picard linearization, and can be
more robust than Picard for certain flow problems. The drawback of Newton’s method is that it
is only locally convergent and involves the computation of derivatives. Although the use of the
solution of the last time step to start the Newton iterations improves considerably the robustness
of Newton’ method, in the degenerate case (saturated/unsaturated flow) the convergence is
ensured only when a regularization step is applied and under additional constraints on the
discretization parameters. While the Newton and the Picard schemes are generally robust,
these iterative methods entail computational costs associated with having to evaluate and solve
the system of equations repeatedly for each time step.

The objective of this study is to investigate the numerical behavior of finite element solution
of Richards equation including the suitability of lumped mass and distributed mass. The work
is also focused on determining the method which would offer a stable solution without requir-
ing the resizing of the finite element mesh structure. Realistic initial and Dirichlet boundary
conditions are imposed in the numerical simulator to the head-based form of Richards equation.
To reduce the CPU time and maintain small truncation error, an adaptive time-stepping strat-
egy is implemented. The nonlinear matrix equations are solved using the Picard and Newton
iteration schemes. The performance of the algorithm is shown to be superior to the conven-
tional pressure head-based form and can be easily used in layered porous media without any
extraordinary treatment.

2. GOVERNING EQUATION AND DISCRETIZATION

The partial differential equation describing fluid flow in partially saturated porous media,
Richards equation, is obtained by combining Darcy’s law with the continuity equation. For
one-dimensional vertical flow in unsaturated soils, pressure head-based Richards equation is
written as

cw)yy = 5 () (5 +1)) @)
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where, 1) is the pressure head [L], ¢ is time [1'], z denotes the vertical distance from the soil
surface assumed positive downward [L], K (1)) is the hydraulic conductivity [LT '], C(¢)) =
% is the specific fluid capacity [L '], @ is the volumetric water content.

The pressure head-based form can be successfully used in both saturated and unsaturated
zones as well as in layered and composite porous materials. However, several studies have
shown that it suffers from convergence difficulties and poor mass balance in modeling infiltra-
tion into very dry media unless very fine discretizations are used [5, 7, 14, 19, 20, 21, 22, 23]
which, in turn, makes the computation very expensive. The time steps required for convergence
are several orders of magnitude smaller than is required for reasonable temporal discretization
[19]. The reason for these problems is highly nonlinear nature of the saturation-pressure func-
tion under dry initial conditions, causing very high fluid pressure gradient near the wetting
front and huge computational cost.

Solution of Richards equation requires knowledge of hydraulic conductivity and fluid con-
tent versus fluid pressure head. These relationships are known as the hydraulic properties of
the porous media. In this study, the most commonly used relationships are the van Genuchten
[24] model. This model illustrated in detail as follows

9(1&)—&+% if v<0 (22
0 (v) =0, it >0 (23)
v [z i[5} e e
K (¢) = K it >0 (2.5)
() = amn% " if <0 (26
c() =0 if >0 (27

Due to the nonlinear nature of the Richards equation (2.1), it should be solve numerically,
finite element Galarkin discretization in space and a finite difference discretization of the time
derivative term are used. To develop the finite element approximation of the pressure head-
based Richards equation, the weak formulation of the dependent variable and the constitutive
relations were approximated using interpolating polynomials [6, 25]. It was assumed that the
hydraulic conductivity as well as capacitance varies linearly within each element [26]:

M
b (z,t) R (2,8) = > bi()N; (2) (2.8)
=1
, J
K~K=>Y K;N;(2) (2.9)

j=1
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M
CmC=> C;N;(z) (2.10)

J=1

where M is the number of elements, N; (z) is the selected basis function, and );(t) is the
associated and time-dependent unknown coefficients representing the solution of flow equation
at nodes within the domain. The goal of the finite element approximation is to minimize the
error and this can be accomplished by introducing the weight function, N; (z), and setting

A~

operator L(1)) to be orthogonal to N; (2):

~

[ 2(5) 8 (zyan - (é 2 - [K () % “"’”] v aK(w)) Ny (2) dz

0z 0z
=0 (2.11)

Performing integration by parts to reduce the second derivative and using fully implicit back-
ward Euler time-marching algorithm with the solution is assumed to be known at time level n
and unknown at time level n + 1, one can discretize the time derivative in (2.11) to yield [27]:

ntl gy
Al ) + 1 {W} - (B) @)
where:
[P L ONi(2) ON;(z)
L4]_.j€ K 5 5; dz (2.13)
Az
[F] = CNy(2)N;(2)dz (2.14)
0
Az ak
(B} = — /0 O Ny()d (2.15)

One can found the detail evaluations of the above integrals and assembly of the global matrices
in the literature [28]. The final results are highlighted herein, first for the stiffness mass matrix
[F7]:

30, +C, C, +0C, 0 o 0
C +C, C,+60,+C, C,+C, . 0
Az . . . )
Fl=—
[F] =15
: : cy,+C, , C, ,+6C, +C, C,  +C,
0 0 . C, ,+C, C, , +3C,
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Similarly matrix [A] is assemble to form:

K, + K, -K, - K, 0 0
-K, - K, K, +2K,+K, -K, - K, 0

. _KN—2 - KN—I KN—2 + 2KN—1 + KN _KN—I - KN
0 0 -K,_, - Ky K, _,+Ky

Finally the driving force vector [B] can be assembled to produce:

K1 + K2 qo(t)
K, — K, 0
1 : :
Bl=_ :
[ ] 2 K¢+1 - Kzfl N 0
KN - KN—I _qL(t)

where ¢, (¢) is the net flux at the upper end and ¢, (¢) is the imposed flux at the lower end of
the spatial domain.

Upon substituting these matrices in (2.12) and rearranging the finite element approximation
of the pressure head-based form Richards equation can be written in matrix form as [28]:

n+1
i—1

! ) 12At 2Az

Kﬂ+1 Kﬂ+1
(Cznjll_{_cnﬂ Az +( i—1 T )]U)

Az (KM 2R+ K
+1 +1 +1 1 +1 +1
+ (Czn—l + GCZL + Cin-i-l ) 12A¢ + : 2iZ : w?
+1 -1
+ | (e ey A (KT K s
v v 12A¢ 2Az v

AZ KTL+1 _ KﬂﬂLl
_ 41 41 41 +1 -1
= [(Cin—l +607 T+ O 12At] Y- (2.16)

This formulation is called the finite element approximation of the pressure head-based form
Richards equation with distributed mass matrix.

The finite element formulation of flow equation with lumped mass matrix is as follows [27]:
+1 +1
Kzn—l +Kzn wﬂ-i—l + _Cp+1 +
2Az =1 At 2Az
1 1 1 1
+ [KZM R ] Pl = Az Ky — K%

ntl _ ZComtlyn | ZTitl i
2Az AL Vi 2

Az i+1

(F7 2K K"*1>] it
(3

(2.17)
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3. ITERATIVE METHODS

The Richards equation (2.12) can be written in the following vector form

A (‘I’n+1) ‘I,ThLl + F (‘Pn+1) ‘Iln+1 —-wn =q (tn+1) o b(‘I’nJrl) (3 1)
At ’
3.1. Newton scheme. Let us consider
f (\I’nJrl) — A (‘IlTLJrl) \I’nJrl + F (‘IlTLJrl) lIln+1 -y —q (tn+1) N (\I,n+1) -0 (3 2)
At '
Here m stands for iteration index, so the Newton scheme [28] is
£ (T ™ h = —f (T"Th ™) (3.3)
where
h — ‘I,n+1,m+1 _ \Iln+1’m (34)
and
’ 1 (91423 n+1
fij = A + Wﬂj + Z awnﬂ‘ps
J
aES n+1 n abi
Atn-i—l Z oy (Ve =) + il (3.5)

is the ij th component of the Jacobian matrix £ (¥"*1).

3.2. Picard Scheme. The simple formulation of Picard scheme [28] can be obtained directly
from (2.12) by iterating with all linear occurrences of ¥"*! taken at the current iteration level
m + 1 and all nonlinear occurrences at the previous level m. We get,

1

n+1,m
A (AT )+ 5

F (g™t | h = —f (g"Hhm) (3.6)

4. NUMERICAL SIMULATIONS

All numerical simulations are done by CATHY (CATchment HYdrology) model that fea-
tures elements of the sequential iterative coupling schemes. CATHY is a physically-based hy-
drological model where the surface module resolves the one-dimensional (1D) diffusion wave
equation and the subsurface module solves the three-dimensional (3D) Richards equation. Cou-
pling between these two equations is based on an extension of the boundary condition switching
procedure used in some subsurface models for the handling of atmospheric inputs on the land
surface boundary of the catchment. The main objective of this work is to assess, via sensitiv-
ity analysis, the accuracy, computational effort and mass balance limitations for the CATHY
model over the frame of lumped mass and distributed mass along with the three tests of soil
hydraulic parameters which make soil retention functions are highly nonlinear. For the case of
convergence criterion, dynamic time stepping control is used to adjust step size of time during
simulation according to the convergence behavior of the nonlinear iteration scheme. Nonlin-
ear tolerance (tol = 1073) is specified for each time step, along with a maximum number of
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iterations, maxit(= 10) . The simulation begins with a time step size of Aty and proceeds
until time 7},,q,.. The current time step size is increased by a factor of At,,.4 (= 1.20) to a
maximum size of At,,,, if convergence is achieved in fewer than maxit, (= 5) iterations, it is
remain unchanged if convergence required between mazit; and maxity (= 8) iterations, and
it is decreased by a factor of At,.q4(= 0.5) to a minimum of At,,;, if convergence required
more than mawity iterations. If convergence is not achieved within maxit, the solution at the
current time level is recomputed using a reduced time step size to the minimum time step size
Atin. For the first time step of simulation, the initial conditions are used as the first solution
estimate for the iterative procedure. For subsequent time steps of simulation the pressure head
solution from the previous step is used as the first estimate. Thus time step size has a direct
effect on convergence behavior, via its influence on the quality of the initial solution estimate.
Back-stepping is also triggered if linear solver failed or if the convergence or residual errors
become larger than maximum allowable convergence or residual error in the nonlinear solution.
In the nonlinear iterative methods, the infinity norm (/) of the convergence error is used as the
termination criterion; that is, when || @™ttt — @ntLm|| < ¢ol is satisfied, convergence is
achieved [29]. The residual error (||f (&""1™) ) is computed using I and I3 norms.

One measure of a numerical simulator is its ability to conserve global mass over the domain
of interest. Satisfying the mass balance is necessary but not completely adequate prerequisite
for a correct solution [7]. To measure the ability of the simulator to conserve mass, one of the
most widely used criteria for evaluating the accuracy of a numerical scheme [7] is the mass
balance error given by

Mass Balance Error — |1 — Total additional mass in the domain

Total net flux into the domain

where the additional mass in the domain is the difference between the mass measured at any
instant t and the initial mass in the domain, and the total net flux into the domain is the flux
balance integrated in time up to ¢. For the finite element approximation, this is calculated by
the following formula [7]:

S oo @) -8 (3 + 057 ) (%)
MB(t) = =

n+1 . . (41)
8- @)

with N = E+1nodes {29, 21, 22, ... ... , 2E }, and constant nodal spacing Az is considered
and ¢p and ¢ being boundary fluxes calculated from the finite element equations associated
with the boundary modes zg and 2.

5. RESULTS AND DISCUSSIONS

To assure the purposes of this work, sum up three one-dimensional test problems on which
these investigations were based, examine methods for quantifying the efficiency, accuracy and
applicability of the resultant solutions, and draw methods to evaluate the computational work
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required to achieve the results. A set of numerical experiments along with lumped and con-
sistent mass was performed, to assess the robustness of the approach, to investigate methods
for improving the efficiency of solutions to Richards equation and to evaluate the advantage of
using the technique.

5.1. Test Problem 1. It is a benchmark test problem that has been previously examined [22,
23, 31, 32, 33]. The domain of this test problem is short and saturated conditions are not
developed. To run CATHY model, two sets of nodal spacing are used (that is, 126 and 251
nodes are used). To assess the oscillation of the solution profile between mass lumping and
distributed mass, very small time step (At,in = 108 s) is used. In this test case, constant
pressure head boundary conditions are imposed, at the bottom and top of the soil column are
—10m and —0.75m respectively. The initial pressure head is —10m. Since the initial and
boundary conditions are not consistent, so a steep gradient in the pressure head is setup. A
0.3m column of soil with van Genuchten parameters 6, = 0.368, 6, = 0.102, « = 3.35/m,
n =2.0and Ky = 7.970m/day.

The pressure head profiles of the finite element results for lumped and distributed mass
matrix for 126 and 251 nodes are shown in the FIGURE 1 and FIGURE 2 respectively. Note
that Pic=Picard & New=Newton in FIGURES. The agreement is quite perfect if using the
lumped mass for both the Picard and Newton iteration. Few numerical oscillations are produces
at the bottom of the soil column based on the consistent mass scheme and it does not improve
even with larger grid spacing. This dissimilarity occurs only for the handling of time (mass)
matrices in the two solution procedures.
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Satisfactory cumulative mass balance errors and nonlinear iterations per time step for the
Picard scheme are shown in FIGURE 3 and FIGURE 4 respectively. Similar behaviors are
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FIGURE 3. Mass balance re-
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observed for the Newton iteration technique. The evaluated methods clearly outperform the
predictable algorithm and these methods seem to handle this test case without any significant
problems. It is also noted that the performance of the schemes in all cases is very similar to
that of the published reports [23, 31, 32, 33]. The computational statistics of the methods under

these conditions is shown in TABLE 1.

TABLE 1. Computational statistics of the Test Problem 1.
Note: Dist=Distributed,ite=iteration, CMBE=Cumulative mass balance error.

No. of layers | Technique | Mass | No. of time steps | NL ite/ Time step | CMBE

. Lump 2622 5.02 1.2954¢-4

Picard =57 3783 5.02 5.9864¢-5

125 Lump 6130 5.02 1.2940¢-4
Newton 457 9620 5.01 5.9181e-5

. Lump 1372 5.02 1.1228¢-4

Picard  —5re 1360 5.02 3702105

250 Lump 3008 5.14 [.1114c-4
Newton =t 4281 5.01 3.32560-5
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Graphical results and statistics of the simulation clearly indicate that the mass lumping tech-
nique is robust than the mass distributing technique for the numerical solution of Richards
equation.

5.2. Test Problem 2. It is a very difficult vertical infiltration one-dimensional problem of
10m high soil column for the van Genuchten model with the soil parameters 6, = 0.301,
0, = 0.093, a = 547/m, n = 4.264 and Ks = 5.040m/days. In order to evaluate the
influence of the algorithm, two sets of grid spacing, one of them is very dense (e.g., Az =
0.05m and 0.025m) and very small time step size (i.e., for Az = 0.05m, At = 107°s and
for Az = 0.025m, Aty = 10719 s) are considered and has been already analyzed in details
[23, 30, 33]. It has constant head boundary conditions at both top (¢ (10,¢) = 0.1) and bottom
(¥ (0,¢t) = 0.0) boundaries and a hydrostatic equilibrium initial condition (¢ (2,0) = —z).
The set of conditions investigated represents range of medium and auxiliary conditions that
are representative of a difficult class of infiltration problem frequently solved using Richards
equation.

The pressure head profile from the solution for Test Problem 2 of 200 layers is shown in
FIGURE 5. It is shown that mass distributed finite element method suffers from numerical

Pic:Mass Lumping
Pic:Distributed Mass
8+ — New:Mass Lumping
—&— New:Distributed Mass

Pressure head - y (m)

5
Elevation (m)

FIGURE 5. Pressure head profiles at 17280s for the Picard and Newton itera-
tive schemes for the lumped and distributed mass of 200 layers.

oscillations at the wetting front but the lumped mass scheme offered oscillations free stable
solution for dry initial conditions. The results hold for the iterative solution to the discretized
version of the pressure head Richards equation including Picard and Newton techniques. To
avoid the divergence, mesh and step size are reduced and FIGURE 6 represents pressure head
solution of 400 layers with very small time step size At,,;, = 10~ s for mass lumped and
distributed mass. Still, the consistent mass scheme of Picard and Newton methods exhibits
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FIGURE 6. Pressure head profiles at 17280s for the Picard and Newton itera-
tive schemes for the lumped and distributed mass of 400 layers.

significant numerical errors ahead of the infiltration front but such oscillations are not present
in the mass lumping formulation. Because the only difference between two solution proce-
dures is the treatment of the time derivative term, these results imply that diagonalized time
(mass) matrices are to be preferred. The cumulative mass balance errors plots are shown in

0.06

0.05-

0.04

0.031

0.02

NonLinear lterations
=
L

5 —Pic:Mass Lumping 1
—— Pic:Distributed Mass

— Pic:Mass Lumping
—— Pic:Distributed Mass

Cumulative Mass Balance Encr(rﬁ’)

001+

3 4

2 4

0 2000 4000 6000 8000 10000 12000 14000 16000 1800 10 20‘00 40I00 GOIUU 8060 10600 12600 14600 16600 18000
Time(s) Time(s)

FIGURE 7. Mass balance re- FIGURE 8. Convergence re-
sult for the Picard iterative sult for the Picard iterative
scheme for the lumped and scheme for the lumped and
distributed mass of 400 lay- distributed mass of 400 lay-
ers. ers.

FIGURE 7 for lumped and distributed mass of Picard scheme of 400 layers case. It is evident
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that excellent mass balance errors are shown for mass lumping case and this implies the nu-
merical results are strictly maintained accuracy. Same error profile is obtained by the Newton
method. FIGURE 8§ is the graphical representation of the convergence behavior of the lumped
and distributed mass of Picard scheme in terms of the number of nonlinear iterations required
at each time step. It is found most striking here the very different behavior between the lumped
and distributed schemes during the simulation period. Where the consistent mass scheme is
forced to take very small step sizes from the beginning to the end of the simulation, that is,
constants convergence oscillations are shown in the simulation of distributed mass procedure.
A comparison of computational statistics, such as the cumulative mass balance errors, the total
number of time steps, and the nonlinear iterations per time steps for the various runs for the
two time matrices approaches, are tabulated in TABLE 2.

TABLE 2. Computational statistics of the Test Problem 2.
Note: Dist=Distributed, ite=iteration, CMBE=Cumulative mass balance error.

No. of layers | Technique | Mass | No. of time steps | NL ite/ Time step | CMBE

. Lump 2109 5.49 5.3998¢-2

Picard =7 4679 5.06 6075702

200 Lump 1137 5.73 5.4068¢-2
Newton =y 764 5.49 6104262

. Lump 4028 5.60 5.0243¢-2

Picard I —rig 9760 5.20 5.9236¢-2

400 Lump 2539 5.56 5.0267¢-2
Newton —pz 2072 5.42 5.9502¢-2

From these statistics in TABLE 2 it can be concluded that all runs have adequate and com-
parable accuracy for the case of mass lumping. Thus the flow equation is one that benefits from
mass lumping in finite element approximation.

5.3. Test Problem 3. This test study consists of vertical infiltration with redistribution [30,
35]. Current problem considers a one-dimensional soil column of 5m deep discretized for two
sets of vertical resolution Az = 0.0250m and 0.0125m. Constant head boundary condition
¥ (0,¢) = 0.0 at the bottom of the domain and a time dependent boundary condition ¢ (10,¢) =
—10(1.0 — 1.01e™?) at the top of the domain with hydrostatic equilibrium initial conditions
¥ (2,0) = —z are applied. The time varying boundary condition yields a difficult two-front
problem. This soil column is parameterized using the van Genuchten relationships with 6, =
0.301, 6, = 0.093, « = 5.47/m, n = 4.264.0 and K = 5.040m/days.

FIGURE 9 and FIGURE 10 show the comparison of pressure head solution profiles for
the cases of lumped and consistent mass of 200 and 400 layers respectively and the solution
obtained with lumped mass is very similar to the previous studies [30, 36]. Picard and Newton
iterative techniques with lumped and distributed mass schemes are achieved convergence with
the minimum time step size At,,;, = 10~ '8days. Run of Newton iteration of distributed
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mass method had to forced stopped due to the time of simulation is significantly increased
for both the grid spacing and it is true even for infinitesimal minimum time step Aty =
10~2%days. 1t is evident from these figures (FIGURE 9 and FIGURE 10) that there is a rapid
infiltration of water from the surface, followed by a period of redistribution of the water due to
the dynamic boundary condition at the top of the domain based on the mass lumping process.
Mass-distributed scheme can still generate numerical oscillations due to the highly nonlinear
properties of water flow in unsaturated soil. Similar numerical results hold for the larger grid
spacing.

Figure 11 shows the cumulative mass balance errors profile of the Picard iterative scheme for
the mass lumping and distributed mass of 400 layers. The magnitude of the errors is remarkably
small for the lumped mass scheme throughout the entire domain of integration, attesting to the
consistency of the mass lumping approximation. Similar results are obtained with respect
to 201 nodes of spatial discretization, again confirming the robustness of the mass lumping
mechanism. The number of iterations required for convergence per time step with the mass
lumping scheme is compared to the distributed mass scheme in FIGURE 12. Lumped finite
element solution converge rapidly, conversely the number of iterations for the distributed mass
solution increases at the beginning of the simulation. The cumulative mass balance errors,
number of time steps, nonlinear iterations per time step for different runs of the mass lumping
method and their comparison with the mass distributed method are presented in TABLE 3 and
it is clear that good performances are exhibited by the mass lumping algorithm. These results
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are illustrative of numerical comparisons and indicate clearly that diagonal time matrices are
superior to the distributed matrices.

TABLE 3. Computational statistics of the Test Problem 3.
Note: Dist=Distributed, ite=iteration, CMBE=Cumulative mass balance error,

NF=Simulation not finished.

No. of layers | Technique | Mass | No. of time steps | NL ite/ Time step | CMBE

. Lump 2010 3.77 1.3358¢-2

Picard = p5 3402 3.44 1.5059¢-2

200 Lump 1736 3.61 1.3354¢-2
Newton =7 NF NF NF

Picard _Lump 3579 437 1.3419¢-2

Dist 6396 3.49 1.5226¢-2

400 Lump 2865 413 1.3416¢-2
Newton =57 NF NF NF

6. CONCLUSION

A simple one-dimensional finite element model for flow equation into homogeneous soils
was presented and the algorithm was implemented by applying the traditional iterative formu-
lations, Picard and Newton based on lumped and distributed mass. Lumping scheme ensures
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mass conservation and allows the handling of highly nonlinear phenomena. The similarity of
number of time steps to complete the simulation and rate of convergence between lumped and
distributed cases suggests that lumping formulation is generally superior to the distributing ap-
proximation. Presented results indicate that non oscillatory numerical solution becomes very
critical in solving problems of infiltration into dry soils with distributing mass. By the choice
of mass lumping numerical method performs very well for unsaturated flow problems involv-
ing vertical infiltration as well as redistribution. According to the experiences learned from
this study, very small time step size or very dense spatial discretization does not eliminate nu-
merical oscillations when solving the highly nonlinear Richards equation based on distributed
mass. The numerical evidence is complemented and explained by the fact that, based on the
pressure head form of Richards equation, coupled with a lumped matrix, yields consistently re-
liable and robust for unsaturated flow problems, even for very dry initial conditions. Numerical
evaluations are presented by this study confirmed that the suitable methodology for unsaturated
flow problems is one that is based on the pressure head form of Richards equation, and uses
a lumped form of the time matrix and can easily be extended to multidimensional problem in
saturated-unsaturated regions in heterogeneous and layered porous media.
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