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QUADRATIC B-SPLINE FINITE ELEMENT METHOD FOR

THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION

Yong-Xue Yin † and Guang-Ri Piao ∗

Abstract. A quadratic B-spline finite element method for the spatial

variable combined with a Newton method for the time variable is proposed

to approximate a solution of Benjamin-Bona-Mahony-Burgers (BBMB)
equation. Two examples were considered to show the efficiency of the

proposed scheme. The numerical solutions obtained for various viscosity

were compared with the exact solutions. The numerical results show that
the scheme is efficient and feasible.

1. Introduction

The mathematical model of propagation of small amplitude long waves
in nonlinear dispersive media is described by the following Benjamin-Bona-
Mahony-Burgers equation[1]:

ut − uxxt − αuxx + βux + uux = f in [0, L]× [0, T ],

u(0, t) = u(L, t) = 0 on [0, T ],

u(x, 0) = u0(x) in [0, L],

(1)

where α > 0, β are constants, f is a given forcing term. In the physical case, the
dispersive effect of (1) is the same as the Benjamin-Bona-Mahony (BBM) equa-
tion, while the dissipative effect is the same as the Burgers equation, and which
is an alternative model for the Korteweg-de Vries-Burgers (KdVB) equation [2].
Numerical methods based on either finite elements[3]-[7], finte differences[8]-
[10],or Adomian decomposition scheme[11, 12]. Quadratic B-spline finite ele-
ment method for approximating the solution of Burgers equation can be found
in [13, 14]. Cubic B-spline collocation method for numerical solution of the
BBMB equation can be found in [15]. In this paper, we apply the quadratic
B-spline finite element method to convert BBMB equation to a finite set of
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nonlinear ordinary differential equations, and then, use a Newton method for
the time variable.
In the next section, the numerical scheme for the BBMB equation is described.
Numerical examples and their results will be shown in the last section.

2. Finite element approximation of The BBMB system

Standard Lagrangian finite element basis functions offer only simple C0-
continuity and therefore they cannot be used for the spatial discretization of
the higher-order differential equations(e.g., third-order differential equation or
forth-order differential equation), but the B-spline basis function can at least
achieve C1-continuous globally, and its basis function is often used to solve the
higher order differential equations.

Let us consider the BBMB equation with boundary conditions and the initial
condition. We use a variational formulation to define a finite element method
to approximate (1). A variational formulation of the problem (1) is as the
following: find u ∈ L2(0, T ;H1

0 (0, L)) such that



∫ L

0

utvdx+

∫ L

0

uxtv
′dx+ α

∫ L

0

uxv
′dx+ β

∫ L

0

uxvdx

+

∫ L

0

uuxvdx =

∫ L

0

fvdx for all v ∈ H1
0 (0, L),

u(0, x) = u0(x) in [0, L],

(2)

where H1
0 = {u ∈ H1(0, L) : u|x=0 = u|x=1 = 0} and H1(0, L) = {v ∈ L2(0.L) :

∂v
∂x ∈ L

2(0, L)}.
A typical finite element approximation of (2) is defined as follows: we first

choose conforming finite element subspaces V h ⊂ H1(0, L) and then define
V h
0 = V h ∩H1

0 (0, L). One then seeks uh(t, ·) ∈ V h
0 such that



∫ L

0

uht v
hdx+

∫ L

0

uhxt(v
h)′dx+ α

∫ L

0

uhx(vh)′dx+ β

∫ L

0

uhxv
hdx

+

∫ L

0

uhuhxv
hdx =

∫ L

0

fvhdx for all vh ∈ V h
0 (0, L),

uh(0, x) = uh0 (x) in [0, L],

(3)

where uh0 (x) ∈ V h
0 is an approximation, e.g., a projection, of u0(x).

The interval [0, L] is divided into n finite elements of equal length h by
the knots xi such that 0 = x0 < x1 < · · · < xn = L. The set of splines
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{η−1, η0, · · · , ηn} form a basis for functions defined on [0, L]. Quadratic B-
splines ηi(x) with the required properties are defined by [16],

ηi(x) =
1

h2


(xi+2 − x)2 − 3(xi+1 − x)2 + 3(xi − x)2), [xi−1, xi],

(xi+2 − x)2 − 3(xi+1 − x)2, [xi, xi+1],

(xi+2 − x)2, [xi+1, xi+2],

0, otherwise,

where h = xi+1 − xi, i = −1, 0, · · · , n.
The quadratic spline and its first derivative vanish outside the interval

[xi−1, xi+2]. Then the spline function values and its first derivative at the
knots are given by{

ηi(xi−1) = ηi(xi+2) = 0, ηi(xi) = ηi(xi+1) = 1;

η
′

i(xi−1) = η
′

i(xi+2) = 0, η
′

i(xi) = η
′

i(xi+1) = 1.
(4)

Thus an approximate solution can be written in terms of the quadratic spline
functions as

uh(x, t) =

n∑
i=−1

ai(t)ηi(x), (5)

where ai(t) are yet undetermined coefficients.
Each spline covers three intervals so that three splines ηi−1(x), ηi(x), ηi+1(x)

cover each finite element [xi, xi+1]. All other splines are zero in this region.
Using Eq.(5) and spline function properties (4), the nodal values of function
uh(x, t) and its derivative at the knot xi and fixed time t̃ can be expressed in
terms of the coefficients ai(t̃) as

uh(xi, t̃) = ai−1(t̃) + ai(t̃),
∂uh(x, t̃)

∂x

∣∣∣
x=xi

=
2

h
(ai(t̃)− ai−1(t̃)). (6)

From (6) and homogeneous boundary conditions we get a−1(t) = −a0(t) and
an(t) = −an−1(t). Hence we have

uh(x, t) =

n−1∑
i=0

ai(t)ξi(x), (7)

where ξ0(x) = (η0(x) − η−1(x)), ξi(x) = ηi(x)(i = 1, 2, · · · , n − 2), ξn−1(x) =
ηn−1(x)−ηn(x). Hence n unknowns ai(t)(i = 0, 1, · · · , n−1) for every moment
of t must be determined.

According to Galerkin method the weighted function vh(x) in (3) is chosen
as vhi (x) = ξi(x)(i = 0, 1, · · · , n− 1). Substituting (7) into (3) we obtain
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

n−1∑
i=0

(∫ L

0

ξiξjdx

)
dai(t)

dt
+

n−1∑
i=0

(∫ L

0

ξ
′

iξ
′

jdx

)
dai(t)

dt

+ α

n−1∑
i=0

(∫ L

0

ξ
′

iξ
′

jdx

)
ai(t) + β

n−1∑
i=0

(∫ L

0

ξ
′

iξjdx

)
ai(t)

+

n−1∑
i=0

n−1∑
k=0

(∫ L

0

ξiξ
′

kξjdx

)
ai(t)ak(t) =

∫ L

0

fξjdx,

n−1∑
i=0

(∫ L

0

ξiξjdx

)
ai(0) =

∫ L

0

u0(x)ξjdx, j = 0, 1, · · · , n− 1.

(8)

Assume mij = (ξi, ξj), sij = (ξ
′

i , ξ
′

j), dij = (ξ
′

i , ξj), nijk = (ξiξ
′

k, ξj), fj =

(f, ξj), u
j
0 = (u0, ξj), and M = (mij), S = (sij), C = (cij), N = (nijk), ~f =

(f0, f1, · · · , fn−1)T , ~u0 = (u00, u
1
0, · · · , un−10 ), ~a0 = (a0(0), a1(0), · · · , an−1)T ,

~a(t) = (a0(t), a1(t), · · · , an−1(t))T , then Eqs.(8) can be written in the matrix
form  (M + S)

d~a

dt
+ (αS + βC)~a+ (~a)TN~a = ~f,

M~a0 = ~u0.
(9)

Eqs.(9) is a nonlinear ordinary differential equations which consists of n equa-
tions and n unknowns. system (9) can be written as standard first order non-
linear ordinary differential equations with initial condition, because M and
(M + S) are invertible matrix,

d~a

dt
= (M + S)−1(~f − (αS + βC)~a− (~a)TN~a), ~a0 = ~u0, (10)

where, for simplicity take ~u0 = M−1~u0. The terms in the right hand side of the
first equation of the system (10) are continuously differentiable, and the sys-
tem (10) exists one and only one solution and have a zero equilibrium solution
when forcing term f(x, t) tends to zero with time infinity. In conclusion, the
equilibrium solution as the starting point, we obtain the numerical solution of
the system (1) by using Newton method.

3. Numerical examples and results

Example 1. We solve the system(1) with the following data:
α = 1, β = 1, L = π, u0(x) = sinx, f = e−t(cosx − sinx + 0.5e−tsin2x). And
in this case the exact solution is e−tsinx.
The relative numerical results are shown in Table 1 and Table 2.

Example 2. We solve the system(1) with the following data:
L = 1, u0(x) = e−xsinπx, f = 0 and various α, β.
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Table 1. Comparison of the numerical solutions of Example
1 obtained with various of ∆t for n = 64 at t = 0.1 with the
exact solutions

x ∆t = 0.01 ∆t = 0.001 ∆t = 0.0005 ∆t = 0.0001 exact sol.
π/64 0.04397 0.04435 0.04437 0.04438 0.04439
π/8 0.34300 0.34593 0.34609 0.34622 0.34626
π/4 0.63379 0.63920 0.63950 0.63975 0.63981
3π/8 0.84393 0.85113 0.85153 0.85186 0.83596
π/2 0.89633 0.90397 0.90440 0.90474 0.90483
5π/8 0.82811 0.83516 0.83556 0.83588 0.83596
3π/4 0.63381 0.63921 0.63951 0.63975 0.63981
7π/8 0.34302 0.34593 0.34610 0.34623 0.34626

63π/64 0.04398 0.04435 0.04437 0.04439 0.04439

Table 2. Comparison of the numerical solutions of Example 1
obtained for various of x and n = 64, ∆t = 0.0001 at different
times with the exact solutions

x t numerical sol. exact sol.

π/4

0.5
1.0
2.0
3.0
4.0

0.428708
0.260048
0.095683
0.035206
0.012953

0.428881
0.260130
0.095696
0.035204
0.012951

π/2

0.5
1.0
2.0
3.0
4.0

0.606305
0.367798
0.135356
0.049818
0.018338

0.606530
0.367879
0.135335
0.049787
0.018315

3π/4

0.5
1.0
2.0
3.0
4.0

0.428731
0.260091
0.095738
0.035251
0.012984

0.428881
0.260130
0.095696
0.035204
0.012951

The relative numerical results are shown in Figure 1 and Figure 2.

Table 1 and Table 2 show that the numerical scheme proposed in this paper
converges very rapidly to solution and has good accuracy. From Figure 1 and
Figure 2, we can see that the system (1) feature balance nonlinear and disper-
sive effects, but takes no account of dissipation. In conclusion, the numerical
results show that the scheme is efficient,feasible and quite satisfactory.
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(a) α = 10−5, β = 1 (b) α = 10−5, β = 5

(c) α = 10−5, β = 10 (d) α = 10−5, β = 15

Figure 1. Approximate solution of Example 2 with a fixed α
and various β.
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(a) α = 10−2, β = 2 (b) α = 10−3, β = 2

(c) α = 10−4, β = 2 (d) α = 10−5, β = 2

Figure 2. Approximate solution of Example 2 with a fixed β
and various α.


