• Title/Summary/Keyword: finite difference time domain

Search Result 463, Processing Time 0.021 seconds

A Fourth-Order Accurate Numerical Boundary Scheme for the Planar Dielectric Interface: a 2-D TM Case

  • Hwang, Kyu-Pyung
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 2011
  • Preserving high-order accuracy in high-order FDTD solutions across dielectric interfaces is very important for practical time-domain electromagnetic simulations. This paper presents a fourth-order accurate numerical boundary scheme for the planar dielectric interface to be used in the fourth-order FDTD method proposed earlier by the author. The interface scheme for the two-dimensional (2-D) transverse magnetic (TM) polarization case is derived and validated by monitoring the $L_2$ norm errors in the numerical solutions of a partially-filled cavity demonstrating its fourth-order convergence and long-time numerical stability in the presence of the planar dielectric interface.

Analysis of Crosstalk between PCB Traces in Frequency and Time Domain (주파수 및 시간 영역에서 인쇄회로기판 선로의 혼신 해석)

  • 이애경;심환우;조광윤
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.430-439
    • /
    • 1996
  • In printed circuit board (PCB) design, it is necessary to predict the crosstalk effect among traces on the circuitary behavior. In this paper, crosstalk between parallel or crossing traces was treated by the finite difference time domain (FDTD) method. They are the typical models of PCB traces and the crosstalk is a major contributor in the creation of electromagnetic interference (EMI). The crosstalk effect was computed for the variation of distance spacing and length of parallel traces and crossing traces. The results in time and frequency domain are discussed and compared with those using MDS(microwave design system) and HFSS(high frequency structure simulator). The comparison shows that the FDTD method can be of wide application in analysis model and save the time required for calculation.

  • PDF

A New Method to Estimate the Induced Electric Field in the Human Child Exposed to a 100 kHz-10 MHz Magnetic Field Using Body Size Parameters

  • Park, Young-Min;Song, Hye-Jin;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • In this paper, a new and simple method is proposed to quickly estimate the induced electric field in the human child exposed to a 100 kHz-10 MHz magnetic field, for the sake of electromagnetic field (EMF) safety assessment. The quasi-static finite-difference time-domain (FDTD) method is used to calculate the induced electric fields in high resolution 3D human child models with various body size parameters, in order to derive the correction factor for the estimation equation. The calculations are repeated for various frequencies and incident angles of the magnetic field. Based on these calculation results, a new and simple estimation equation for the 99th percentile value of the body electric field is derived that depends on the body size parameters, and the incident magnetic field. The estimation errors were equal to or less than 5.1%, for all cases considered.

Development of Three Dimensional Chloride Ion Penetration Model Based on Finite Element Method (유한요소법을 이용한 3차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.43-49
    • /
    • 2015
  • Most of agricultural structures located in seashore could not avoid rapid deterioration of concrete because chloride-ion and $CO_2$ gradually penetrate into concrete. However, since most of models can be able to describe the phenomenon of penetration by using one or two dimensional models based on finite difference method (FDM), those modes can not simulate the real geometry and it takes a lot of computational time to complete even the calculation. To overcome those weaknesses, three dimensional numerical model considering time dependent variables such as surface concentration of chloride and diffusion coefficient of domain based on finite element method (FEM) was suggested. This model also included the neutralization occurred by the penetration of $CO_2$. Because the model used various sizes of tetrahedral mesh instead of equivalent rectangular mesh, it reduced the computational time to compare with FDM. As this model is based on FEM, it will be easily extended to execute multi-physics simulation including water evaporation and temperature change of concrete.

Comparison of performance of automatic detection model of GPR signal considering the heterogeneous ground (지반의 불균질성을 고려한 GPR 신호의 자동탐지모델 성능 비교)

  • Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.341-353
    • /
    • 2022
  • Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.

Study on Wideband Shielding Effects of Simple Building Structures Using FDTD Method (FDTD 방법을 이용한 간단한 건물 구조의 광대역 차폐 효과에 관한 연구)

  • Cho, Jeahoon;Ha, Sang-Gyu;Park, Sungmin;Chu, Kwanguk;Ju, Saehoon;Kim, Hyeongdong;Jung, Kyung-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.748-751
    • /
    • 2013
  • We perform a wideband radiated pulse coupling analysis of simple building structures using the finite-deference time-domain(FDTD) method. Toward this purpose, the building structures composed of concrete and window materials are assumed and we numerically model the electrical properties of each material. In this work, we apply a dispersive FDTD algorithm for the electromagnetic analysis of building structures and investigate their shielding effectiveness in the frequency range of 50 MHz to 1 GHz.

Finite-Difference Time-Domain Calculation of Light Scattering Efficiency for Ag Nanorings (유한차분 시간영역 방법을 이용한 Ag 나노링 구조의 산란효과)

  • Lee, Tae-Soo;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.519-525
    • /
    • 2012
  • Enhancement of light trapping in solar cells is becoming increasingly urgent for the development of next generation thin film solar cells. One of the possible candidates for increasing light trapping in thin film solar cells that has emerged recently is the use of scattering from metallic nanostructures. In this study, we have investigated the effects of the geometric parameters of Ag nanorings on the light scattering efficiency by using three dimensional Finite Different Time Domain (FDTD) calculations. We have found that the forward scattering of incident radiation from Ag nanorings strongly depends on the geometric parameters of the nanostructures such as diameter, height, etc. The forward scattering to substrate direction is increased as the outer diameter and height of the nanorings decrease. In particular, for nanorings larger than 200 nm, the inner diameter of Ag nanorings should be optimized to enhance the forward scattering efficiency. Light absorption and scattering efficiency calculations for the various nanoring arrays revealed that the periodicity of nanorings arrays also plays an important role in the absorption and the scattering efficiency enhancement. Light scattering efficiency calculations for nanoring arrays also revealed that enhancement of scattering efficiency could be utilized to enhance the light absorption through the forward scattering mechanism.

Nano-Optical Investigation of Enhanced Field at Gold Nanosphere-Gold Plane Junctions

  • Ahn, Sung-Hyun;Park, Won-Hwa;Kim, Zee-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2200-2202
    • /
    • 2007
  • The local field distribution around gold nanosphere-gold plane junction has been studied using the finitedifference time-domain (FDTD) electrodynamics calculation procedure. We find that both the in-plane and out-of-plane polarized excitation produce enhanced field strong enough to explain the observed SERS activities of the junctions. Comparison with a simple dipole-image dipole model shows that the enhanced field primarily originates from the multipole-image multipole interaction, which indicates that the detailed fine-structures of the nanoparticles also play a significant role in the SERS activities as well.

다층 유전체위의 다중 결합선로에 대한 유한차분법(FDTD)을 이용한 해석

  • 김윤석
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.155-163
    • /
    • 2000
  • A general characterization procedure based on the extraction of a 2n-port admittance matrix corresponding to n uniform coupled lines on the multi-layered substrate using the Finite-Difference Time-Domain (FDTD) technique is presented. The frequency-dependent normal mode parameters are obtained from the 2n-port admittance matrix, which in turn provides the frequency-dependent distributed inductance and capacitance matrices. To illustrate the technique, several practical coupled line structures on multi-layered substrate, including a three-line structure, have been simulated. It is shown that the FDTD based time domain characterization procedure is an excellent broadband simulation tool for the design of multiconductor coupled lines on multilayered PCBs as well as thick or thin hybrid structures.

  • PDF

Effective Sensing Volume of Terahertz Metamaterial with Various Gap Widths

  • Park, Sae June;Yoon, Sae A Na;Ahn, Yeong Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.628-632
    • /
    • 2016
  • We studied experimentally and theoretically the vertical range of the confined electric field in the gap area of metamaterials, which was analyzed for various gap widths using terahertz time-domain spectroscopy. We measured the resonant frequency as a function of the thickness of poly(methyl methacrylate) in the range 0 to 3.2 μm to quantify the effective detection volumes. We found that the effective vertical range of the metamaterial is determined by the size of the gap width. The vertical range was found to decrease as the gap width of the metamaterial decreases, whereas the sensitivity is enhanced as the gap width decreases due to the highly concentrated electric field. Our experimental findings are in good agreement with the finite-difference time-domain simulation results. Finally, a numerical expression was obtained for the vertical range as a function of the gap width. This expression is expected to be very useful for optimizing the sensing efficiency.