Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.5.628

Effective Sensing Volume of Terahertz Metamaterial with Various Gap Widths  

Park, Sae June (Department of Physics and Department of Energy Systems Research, Ajou University)
Yoon, Sae A Na (Department of Physics and Department of Energy Systems Research, Ajou University)
Ahn, Yeong Hwan (Department of Physics and Department of Energy Systems Research, Ajou University)
Publication Information
Journal of the Optical Society of Korea / v.20, no.5, 2016 , pp. 628-632 More about this Journal
Abstract
We studied experimentally and theoretically the vertical range of the confined electric field in the gap area of metamaterials, which was analyzed for various gap widths using terahertz time-domain spectroscopy. We measured the resonant frequency as a function of the thickness of poly(methyl methacrylate) in the range 0 to 3.2 μm to quantify the effective detection volumes. We found that the effective vertical range of the metamaterial is determined by the size of the gap width. The vertical range was found to decrease as the gap width of the metamaterial decreases, whereas the sensitivity is enhanced as the gap width decreases due to the highly concentrated electric field. Our experimental findings are in good agreement with the finite-difference time-domain simulation results. Finally, a numerical expression was obtained for the vertical range as a function of the gap width. This expression is expected to be very useful for optimizing the sensing efficiency.
Keywords
Terahertz spectroscopy; Metamaterials; Sensor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, “Electromagnetic metamaterials for terahertz applications,” Terahertz Sci. Technol. 1, 42-50 (2008).
2 S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4, 4988 (2014).
3 S. J. Park, S. W. Jun, A. R. Kim, and Y. H. Ahn, “Terahertz metamaterial sensing on polystyrene microbeads: Shape dependence,” Opt. Mater. Express 5, 2150-2155 (2015).   DOI
4 S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn, “Sensitive detection of yeast using terahertz slot antennas,” Opt. Express 22, 30467-30472 (2014).   DOI
5 J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).   DOI
6 R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).   DOI
7 H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).   DOI
8 J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations,” Opt. Express 16, 1786-1795 (2008).   DOI
9 R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002).   DOI
10 H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94, 063901 (2005).   DOI
11 D. J. Park, J. T. Hong, J. K. Park, S. B. Choi, B. H. Son, F. Rotermund, S. Lee, K. J. Ahn, D. S. Kim, and Y. H. Ahn, “Resonant transmission of terahertz waves through metallic slot antennas on various dielectric substrates,” Curr. Appl. Phys. 13, 753-757 (2013).   DOI
12 J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).   DOI
13 D. J. Park, S. J. Park, I. Park, and Y. H. Ahn, “Dielectric substrate effect on the metamaterial resonances in terahertz frequency range,” Curr. Appl. Phys. 14, 570-574 (2014).
14 S. J. Park and Y. H. Ahn, “Substrate effects on terahertz metamaterial resonances for various metal thicknesses,” J. Korean Phys. Soc. 65, 1843-1847 (2015).
15 J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).   DOI
16 Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).
17 S. J. Park, S. A. N. Yoon, and Y. H. Ahn, “Dielectric constant measurements of thin films and liquids using terahertz metamaterials,” RSC Adv. 6, 69381-69386 (2016).   DOI
18 J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4, 3950-3957 (2013).
19 H. R. Park, K. J. Ahn, S. Han, Y. M. Bahk, N. Park, and D. S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782-1786 (2013).   DOI