• Title/Summary/Keyword: finite 1-type

Search Result 1,033, Processing Time 0.03 seconds

Blow-up of Solutions for Higher-order Nonlinear Kirchhoff-type Equation with Degenerate Damping and Source

  • Kang, Yong Han;Park, Jong-Yeoul
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • This paper is concerned the finite time blow-up of solution for higher-order nonlinear Kirchhoff-type equation with a degenerate term and a source term. By an appropriate Lyapunov inequality, we prove the finite time blow-up of solution for equation (1.1) as a suitable conditions and the initial data satisfying ||Dmu0|| > B-(p+2)/(p-2q), E(0) < E1.

Dynamic Analysis of a Stewart Platform Type of Machine Tool (스튜엇트 플랫폼형 공작기계의 동특성해석)

  • 장영배;장경진;백윤수;박영필
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.49-59
    • /
    • 1999
  • The mechanism of Stewart platform has many advantages for kinematic analysis and control. Thus there have been many research about employing this mechanism in the new type of machine tool. Since the vibration caused during the manufacturing process has a severely adverse effect on the machining precision. it is very important to enhance the vibrational characteristics. However. it is not easy to use finite element model for the vibration analysis. That is because the vibration behaviors of the structure vary in a complicated manner according as the length of links varies. In this paper, a Stewart platform type of machine tool is modeled in finite element method and then updated by using the experimental modal data. Finally. the static and dynamic characteristics of the finite element model are predicted and then discussed.

  • PDF

ON MALCEV ALGEBRA BUNDLES

  • HOWIDA ADEL ALFRAN;K. KAMALAKSHI;R. RAJENDRA;P. SIVA KOTA REDDY
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • In this paper, we study Malcev algebra bundles and Malcev algebra bundles of finite type. Lie algebra bundles and Lie transformation algebra bundles are defined using given Malcev algebra bundle and we conclude some results for finite type.

NON-FINITELY BASED FINITE INVOLUTION SEMIGROUPS WITH FINITELY BASED SEMIGROUP REDUCTS

  • Lee, Edmond W.H.
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.53-62
    • /
    • 2019
  • Recently, an infinite class of finitely based finite involution semigroups with non-finitely based semigroup reducts have been found. In contrast, only one example of the opposite type-non-finitely based finite involution semigroups with finitely based semigroup reducts-has so far been published. In the present article, a sufficient condition is established under which an involution semigroup is non-finitely based. This result is then applied to exhibit several examples of the desired opposite type.

Effect of bone quality and implant surgical technique on implant stability quotient (ISQ) value

  • Yoon, Hong-Gi;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Su-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.10-15
    • /
    • 2011
  • PURPOSE. This study investigated the influence of bone quality and surgical technique on the implant stability quotient (ISQ) value. In addition, the influence of interfacial bone quality, directly surrounding the implant fixture, on the resonance frequency of the structure was also evaluated by the finite element analysis. MATERIALS AND METHODS. Two different types of bone (type 1 and type 2) were extracted and trimmed from pig rib bone. In each type of bone, the same implants were installed in three different ways: (1) Compaction, (2) Self-tapping, and (3) Tapping. The ISQ value was measured and analyzed to evaluate the influence of bone quality and surgical technique on the implant primary stability. For finite element analysis, a three dimensional implant fixture-bone structure was designed and the fundamental resonance frequency of the structure was measured with three different density of interfacial bone surrounding the implant fixture. RESULTS. In each group, the ISQ values were higher in type 1 bone than those in type 2 bone. Among three different insertion methods, the Tapping group showed the lowest ISQ value in both type 1 and type 2 bones. In both bone types, the Compaction groups showed slightly higher mean ISQ values than the Self-tapping groups, but the differences were not statistically significant. Increased interfacial bone density raised the resonance frequency value in the finite element analysis. CONCLUSION. Both bone quality and surgical technique have influence on the implant primary stability, and resonance frequency has a positive relation with the density of implant fixture-surrounding bone.

Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis

  • Kim, Kun-Soo;Han, Oneil;Gombosuren, Munkhtulga;Kim, Sang-Hyo
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.53-67
    • /
    • 2019
  • This study presents finite element analysis (FEA) on a Y-type perfobond rib shear connection using Abaqus software. The performance of a shear connection is evaluated by conducting a push-out test. However, in practice, it is inefficient to verify the performance by conducting a push-out test with regard to all design variables pertaining to a shear connector. To overcome this problem, FEA is conducted on various shear connectors to accurately estimate the shear strength of the Y-type perfobond rib shear connection. Previous push-out test results for 14 typical push-out test specimens and those obtained through FEA are compared to analyze the shear behavior including consideration of the design variables. The results show that the developed finite element model successfully reflects the effects of changes in the design variables. In addition, using the developed FEA model, the shear resistance of a stubby Y-type perfobond rib shear connector is evaluated based on the concrete strength and transverse rebar size variables. Then, the existing shear resistance formula is upgraded based on the FEA results.

A Study on the Behavior of Elastic Stress Distribution in Front Fillet Welds by Finite Element Method (Front Fillet Welds에서의 탄성응력(彈性應力)의 거동(擧動)에 관(關)한 연구(硏究))

  • Dong-Suk,Um
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1975
  • This paper investigates the distribution of stress and its behavior at the Root Toe in fillet welding joint. Furthermore, the stress components and principal stresses in the fillet welds are calculated by the finite element method. The distribution of stresses obtained numerically by means of the finite element method is also compared with the experimental results of two dimensional photoelasticity. A Cover plate type and Center block type of fillet welds are used as models for the numerical calculations covering the variations of 2 W/M(thickness of main plate/thickness of cover plate)=1 through 2W/M=4. The results obtained in these studies are summarized as follows; 1) When W2/M values become small, the stress concentration factors of the Root are larger than of the Toe in a C-type. Its critical value is 2W/M=3.00. However, no critical value exists in a T-type. 2) For 2W/M Values being avove 3.5 in a C-type and above 4.0 in a T-type, $K_R$ and $K_{\tau}$ become 1. 3) According to the differences of 2W/M values, the differences in stress become increasing in the Root but become decreasing in the Toe. These differences, however, disappear as the free boundary surface is approached. 4) The stress concentration factors of both the Root and Toe obtained by means of the finite element method have somewhat lower values than obtained by the photoelasiticity. But their principal stress directions coincide in either method. 5) It proves beneficial to employ the finite element method for two-dimensional plane stress analysis in front fillet welding joint.

  • PDF

ON SOME L1-FINITE TYPE (HYPER)SURFACES IN ℝn+1

  • Kashani, Seyed Mohammad Bagher
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • We say that an isometric immersed hypersurface x : $M^n\;{\rightarrow}\;{\mathbb{R}}^{n+1}$ is of $L_k$-finite type ($L_k$-f.t.) if $x\;=\;{\sum}^p_{i=0}x_i$ for some positive integer p < $\infty$, $x_i$ : $M{\rightarrow}{\mathbb{R}}^{n+1}$ is smooth and $L_kx_i={\lambda}_ix_i$, ${\lambda}_i\;{\in}\;{\mathbb{R}}$, $0{\leq}i{\leq}p$, $L_kf=trP_k\;{\circ}\;{\nabla}^2f$ for $f\;{\in}\'C^{\infty}(M)$, where $P_k$ is the kth Newton transformation, ${\nabla}^2f$ is the Hessian of f, $L_kx\;=\;(L_kx^1,\;{\ldots},\;L_kx^{n+1})$, $x=(x^1,\;{\ldots},\;x^{n+1})$. In this article we study the following(hyper)surfaces in ${\mathbb{R}}^{n+1}$ from the view point of $L_1$-finiteness type: totally umbilic ones, generalized cylinders $S^m(r){\times}{\mathbb{R}}^{n-m}$, ruled surfaces in ${\mathbb{R}}^{n+1}$ and some revolution surfaces in ${\mathbb{R}}^3$.