SOME NONEXISTENCE THEOREMS OF FINITE TYPE CLOSED CURVES ON THE PSEUDO-HYPERBOLIC SPACE $H^{4}\left(-c^{2}\right)$

Kyoung-Hwa Shin and Yong-Soo Pyo

Abstract We obtain some theorems on nonexistence of certain finte type closed curves on the pseudo-hyperbolic space $H^{4}\left(-c^{2}\right)$ in the Minkowski spacetime E_{1}^{5}.

1. Introduction

First, we will survey briefly the fundamental concepts and properties in the pseudo-Riemannian geometry. We refer mainly to O'Neill([9]) and Chen([3],[4]). For the general concepts in the Riemannian geometry, refer to the book of Kobayash and Nomizu $([8])$.

Let M be a C^{∞}-class differentiable manifold of dimension n and g a C^{∞}-class differentiable symmetric nondegenerate tensor field of type $(0,2)$ on M. The pseudo-Remannian metric g_{p} at every point p of M defines the scalar product on the tangent space $T_{p}(M)$ of M at p. The index of g_{p} is not necessarily constant in general. If the index of g_{p} is constant $t(0 \leq t \leq n)$ on M, then we call g a pseudo-Riemannian metric of signature $(t, n-t)$. And a C^{∞}-class differentiable manifold (M, g) furnished with a pseudo-Riemannian metric g is called a pseudoRiemannian manifold. A pseudo-Riemannian mannfold of signature $(0, n)$ means a Riemannian manifold. Let v be a tangent vector to a pseudo-Riemannian manifold M with a pseudo-Riemannian metric g. Then v is said to be

$$
\begin{aligned}
\text { spacelike } & \text { if } g(v, v)>0 \text { or } v=0 \\
\text { lightlike } & \text { if } g(v, v)=0 \text { and } v \neq 0 \\
\text { timelike } & \text { if } g(v, v)<0
\end{aligned}
$$

The simplest example of pseudo-Riemannian manifold is a pseudoEuclidean space.defined as follows;

Let ($x^{1}, x^{2}, \cdots, x^{m}$) be a point in the set R^{m} of all ordered m-tuples of real numbers. For each $t(0 \leq t \leq m)$, we define a scalar product g_{0} on $T_{p}\left(R^{m}\right)$ at the point p of R^{m} by

$$
g_{0}\left(v_{p}, w_{p}\right)=-\sum_{i=1}^{t} v^{2} w^{2}+\sum_{i=t+1}^{m} v^{2} w^{2}
$$

where $v_{p}=\sum_{i=1}^{m} v^{t} \partial / \partial x^{2}$ and $w_{p}=\sum_{r=1}^{m} w^{i} \partial / \partial x^{2} . E_{t}^{m}$ denotes a R^{m} with a canoncal pseudo-Riemannian metric g_{0}. In this case, g_{0} is called a pseudo-Euclidean metric of signature $(t, m-t)$ and E_{t}^{m} is called a pseudo-Euclidean space of signature ($t, m-t$). In particular, E_{1}^{m} is called a Minkowski spacetime.

Now, let $x: M \rightarrow E_{t}^{m}$ be an isometric immersion of a pseudoRiemannian manifold M of dimension n into an m-dimensional pseudoEuclidean space E_{t}^{m} of signature ($t, m-t$). If x has the spectral decomposition as follows:

$$
x=x_{0}+\sum_{i=1}^{k} x_{i}: \Delta x_{2}=\lambda_{2} x_{i}, x_{i} \neq 0, \lambda_{2} \neq \lambda_{j}(i \neq j)
$$

then M is called to be of k-type submanifold and $x k$-type immersion, where Δ is the Laplace operator on M. If one of $\lambda_{2}, i=1,2, \cdots, k$ is zero, then submanifold M or immersion x is said to be of null k-type.

The following theorem presents a necessary condition for M to be of k-type submanifold.

Theorem A[2,3]). Let M be a pseudo-Riemannian submanifold of E_{t}^{m} and H the mean curvature vector field of M. If M is of k-type, then there is a polynomial $P(X)$ of degree k such that $P(\Delta) H=0$.

If M is compact, the converse is also satisfied. That is,

Theorem B[3]. Let M be a compact pseudo-Riemannian submanifold isometrically immersed in a pseudo-Euclidean space E_{t}^{m}. If there exists a nontrivial polynomial $P(X)$ such that $P(\Delta) H=0$, then M is of finite type.

Remark. Finite type curves in a Euclidean space were investigated in $[1,2,5,6]$ etc.

From now on, we will <, > instead of a pseudo-Euclidean metric g_{0}. And we denote by $H_{t}^{m}\left(-c^{2}\right)=\left\{p \in E_{t+1}^{m+1} \mid<p, p>=-c^{2}\right\}$. In this case, it is called the pseudo-hyperbolvc space of radius $c>0$ and center o in E_{t+1}^{m+1}. For a vector $a_{0}=\left(a_{1}, a_{2}, \cdots, a_{t}, \cdots, a_{m}\right)$ in E_{t}^{m},

$$
\bar{a}_{0}=\left(-\bar{a}_{1},-\bar{a}_{2}, \cdots,-a_{t}, a_{t+1}, a_{t+2}, \cdots, a_{m}\right)
$$

is called the conjugate vector of a_{0}.
In [7] and [10], the authors proved the following
Theorem C. Only 1-type closed curve $\gamma(s)$ on $H_{t}^{m}\left(-c^{2}\right)$ is an intersection of $H_{t}^{m}\left(-c^{2}\right)$ and a 2-plane P lying in $\Pi_{a_{0}}$, where P is determined by two spacelike vectors and $\Pi_{a_{0}}$ denotes a hyperplane through a_{0} which is orthogonal to the conjugate vector \bar{a}_{0} in the sense of Euclidean scalar product.

Ishikawa $([7])$ also proved some nonexistence theorems concerning finite type closed curves on a pseudo-hyperbolic space $H^{2}\left(-c^{2}\right)$. For instance,

Theorem D. There exists neither 2-type closed curves nor 3-type closed curves on $H^{2}\left(-c^{2}\right)$.

The purpose of this article is to prove some nonexistence theorems for a higher k-type ($k \geq 3$) closed curves on $H^{4}\left(-c^{2}\right)$.

2. Preliminaries

Every closed curve $\gamma:[0,2 \pi r] \rightarrow E_{t}^{m}$ of the length $2 \pi r$ in E_{t}^{m} may be regarded as an isometric immersion of a circle of radius r into E_{t}^{m}. We use the arc length s as a parameter of γ. Then the Laplacian Δ on the circle is given by $\Delta=-d^{2} / d s^{2}$ and the eigenvalues are $\left\{(l / r)^{2} ; l=\right.$ $1,2, \cdots\}$. The corresponding eigenspace V_{l} is constructed by using $\cos (l s / r)$ and $\sin (l s / r)$. Hence, every closed curve $\gamma:[0,2 \pi r] \rightarrow E_{t}^{m}$ has the spectral decomposition

$$
\gamma(s)=a_{0}+\sum_{l=1}^{\infty}\left\{a_{l} \cos (l s / r)+b_{l} \sin (l s / r)\right\},
$$

where a_{l}, b_{l} are some vectors in E_{t}^{m} (see [2],[5]). In particular, if γ is a k-type closed curve of the length 2π on $H_{t}^{m}\left(-c^{2}\right)$, then γ can be expressed as

$$
\begin{equation*}
\gamma(s)=a_{0}+\sum_{\imath=1}^{k}\left\{a_{\imath} \cos \left(p_{\imath} s\right)+b_{\imath} \sin \left(p_{\imath} s\right)\right\}, \tag{2.1}
\end{equation*}
$$

where a_{2} or b_{2} is a nonzero vector in E_{t}^{m} for each $i=1,2, \cdots, k, p_{\imath}$ are the positive integers with $p_{1}<p_{2}<\cdots<p_{k}$ and s is the arc length parameter of γ. Because of $\gamma(s)$ being on $H_{t}^{m}\left(-c^{2}\right)$ and a_{0} the center of mass of γ, a_{0} is a timelike vector in E_{t+1}^{m+1} (see [7]). Furthermore, from $<\gamma(s), \gamma(s)>=-c^{2}$, we have the following

$$
\begin{equation*}
2<a_{0}, a_{0}>+2 c^{2}+\sum_{\imath=1}^{k} D_{i \imath}=0 \tag{2.2}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{p_{1}=l} M_{\imath}+\sum_{2 p_{1}=l} A_{22}+2 \sum_{\substack{p_{2}+p_{j}=t \\
t>j}} A_{2 j}+2 \sum_{\substack{p_{2}-p_{3}=l \\
i>2}} D_{2 j}=0, \tag{2.3}\\
& \sum_{p_{2}=l} \bar{M}_{2}+\sum_{2 p_{i}=l} \bar{A}_{22}+2 \sum_{\substack{p_{2}+p_{j}=t \\
i>j}} \bar{A}_{2 j}-2 \sum_{\substack{p_{2}=p_{j}=t \\
i>j}} \bar{D}_{2 j}=0 \tag{2.4}
\end{align*}
$$

for each $l \in\left\{p_{\imath}, 2 p_{2}, p_{2}+p_{j}, p_{2}-p_{j} ; 1 \leq j<i \leq k\right\}$, where

$$
\begin{array}{ll}
M_{\imath}=4<a_{0}, a_{i}>, & \vec{M}_{i}=4<a_{0}, b_{\imath}> \\
A_{2 \jmath}=<a_{i}, a_{\jmath}>-<b_{\imath}, b_{j}>, & \vec{A}_{\imath \jmath}=<a_{2}, b_{3}>+<b_{i}, a_{\jmath}> \\
D_{\imath \jmath}=<a_{\imath}, a_{j}>+<b_{2}, b_{\jmath}>, & \vec{D}_{\imath \jmath}=<a_{\imath}, b_{\jmath}>-<b_{2}, a_{\jmath}>
\end{array}
$$

From now on, we call the real numbers M_{2} and \bar{M}_{\imath} (resp. $A_{2 i}$ and $\bar{A}_{i 2}, A_{i j}$ and $\bar{A}_{i j}$, or $D_{i j}$ and $\bar{D}_{i j}$) to be corresponding to the integer $p_{\imath}\left(\right.$ resp. $2 p_{2}, p_{\imath}+p_{j}$, or $p_{2}-p_{j}$). Since s is the arc length parameter of $\gamma(s)$, we have

$$
\begin{align*}
& 2=\sum_{\imath=1}^{k} p_{\imath}^{2} D_{\imath \imath}, \tag{2.5}\\
& \sum_{2 p_{i}=i} p_{z}^{2} A_{22}+2 \sum_{\substack{p_{2}+r_{j}=t \\
i>j}} p_{2} p_{j} A_{2 j}-2 \sum_{\substack{p_{2}-p_{3}=t \\
i>j}} p_{\imath} p_{j} D_{\imath j}=0, \tag{2.6}\\
& \sum_{2 p_{\mathrm{r}}=l} p_{2}^{2} \bar{A}_{22}+2 \sum_{\substack{p_{2}+p_{3}=i \\
\lambda \gg}} p_{2} p_{3} \bar{A}_{2 j}+2 \sum_{\substack{p_{2}-p_{j}=i \\
\lambda>3}} p_{2} p_{3} \bar{D}_{2 j}=0 . \tag{2.7}
\end{align*}
$$

Moreover, if $<\gamma^{(r)}(s), \gamma^{(r)}(s)>$ is constant $(r=1,2, \cdots)$, then we have

$$
\begin{align*}
& \sum_{2 p_{i}=t} p_{\imath}^{2 r} A_{i 2}+2 \sum_{\substack{p_{2}+p_{j}=t \\
\imath>3}}\left(p_{\imath} p_{j}\right)^{r} A_{2 j}+(-1)^{r} 2 \sum_{\substack{p_{2}-p_{j}=t \\
1>j}}\left(p_{\imath} p_{j}\right)^{r} D_{i j}=0, \tag{2.8}\\
& \sum_{2 p_{\imath}=l} p_{2}^{2 r} \bar{A}_{22}+2 \sum_{\substack{p_{\imath}+p_{j}=t \\
z>3}}\left(p_{\imath} p_{j}\right)^{r} \bar{A}_{\imath j}-(-1)^{r} 2 \sum_{\substack{p_{2}-p_{j}=t \\
i>j}}\left(p_{i} p_{j}\right)^{r} \bar{D}_{\imath j}=0 . \tag{2.9}
\end{align*}
$$

Next, let γ be a k-type closed curve on $H_{t}^{m}\left(-c^{2}\right)$ given in (2.1). Divide the set $\mathfrak{A}=\left\{p_{2}, 2 p_{2}, p_{2}+p_{1}, p_{t}-p_{3}, 1 \leq j<i \leq k\right\}$ as the union of the subsets as follows:

$$
\begin{equation*}
\mathfrak{A}=\mathfrak{A}_{1} \cup \mathfrak{A}_{2} \cup \cdots \cup \mathfrak{A}_{N} \tag{2.10}
\end{equation*}
$$

where all elements in each subset $\mathscr{A}_{n}(n=1,2, \cdots, N)$ are equal to each other and if $n_{1} \neq n_{2}$, then every element in $\mathfrak{A}_{n_{1}}$ is not equal to any element in $\mathfrak{A}_{n_{2}}$.

3. Main results

Let γ be a closed k-type curve on $H_{t}^{m}\left(-c^{2}\right)$ in E_{t+1}^{m+1}. Then γ is expressed as $\gamma(s)=a_{0}+\sum_{\imath=1}^{k}\left\{a_{\imath} \cos \left(p_{\imath} s / r\right)+b_{i} \sin \left(p_{\imath} s / r\right)\right\}$, where a_{\imath} or b_{i} is a nonzero vector in E_{t+1}^{m+1} for each $i=1,2, \cdots, k$ and p_{i} are the positive integers satisfying $p_{1}<p_{2}<\cdots<p_{k}$. Here s is the arc length parameter of γ and the length of γ is $2 \pi r$. Therefore every k-type closed curve $\gamma(s)$ of the length 2π may be described as

$$
\begin{equation*}
\gamma(s)=a_{0}+\sum_{\imath=1}^{k}\left\{a_{\imath} \cos \left(p_{\imath} s\right)+b_{\imath} \sin \left(p_{\imath} s\right)\right\} . \tag{3.1}
\end{equation*}
$$

We prove our results for $r=1$, because the proof for case $r \neq 1$ is same as one for case of $r=1$.

Lemma 3.1[7]. (1) If $<\gamma^{(r)}(s), \gamma^{(r)}(s)>$ is constant ($r=1,2$, $\cdots, l)$ and the number of members in \mathfrak{A}_{n} is less than or equal to $l+1$, then M_{\imath} and \bar{M}_{2} (resp. $A_{2 \tau}$ and $\bar{A}_{21}, A_{2 j}$ and $\bar{A}_{\imath j}$, or $D_{\imath \jmath}$ and $\bar{D}_{2 \jmath}$) of corresponding to the integer $p_{\imath}\left(\right.$ resp. $2 p_{\imath}, p_{\imath}+p_{j}$, or $\left.p_{\imath}-p_{j}\right)$ in \mathfrak{A}_{n} vanish.
(2) In particular, for every k-type closed curve $\gamma(s)$ on $H_{t}^{m}\left(-c^{2}\right)$ in E_{t+1}^{m+1}, we have

$$
\begin{aligned}
& A_{k k}=\bar{A}_{k k}=0, \\
& A_{k(k-1)}=\bar{A}_{k(k-1)}=0, \\
& A_{(k-1)(k-1)}=\bar{A}_{(k-1)(k-1)}=0 .
\end{aligned}
$$

Now, let $\gamma(s)$ be a k-type closed curve on $H^{4}\left(-c^{2}\right)$ as (3.1). Then we can obtain the following three lemmas.

Lemma 3.2. If $\gamma(s)$ satisfies the following conditions

$$
\begin{equation*}
M_{k}=\bar{M}_{k}=M_{k-1}=\bar{M}_{k-1}=0 \text { and } D_{k(k-1)}=\bar{D}_{k(k-1)}=0 \tag{3.2}
\end{equation*}
$$

then $a_{k-1}, b_{k-1}, a_{k}, b_{k}$ are spacelike vectors and $\left\{a_{0}, a_{k-1}, b_{k-1}, a_{k}, b_{k}\right\}$ forms a basis of E_{1}^{5}.

Proof. Since a_{0} is a timelike vector in E_{1}^{5} and $\left.<a_{0}, a_{k}>=<a_{0}, b_{k}\right\rangle$ $=\left\langle a_{0}, a_{k-1}\right\rangle=\left\langle a_{0}, b_{k-1}\right\rangle=0, a_{k-1}, b_{k-1}, a_{k}$ and b_{k} are spacelike vectors(see [7]). Furthermore, a_{k-1}, b_{k-1}, a_{k} and b_{k} are nonzero vectors because $\left\langle a_{k}, a_{k}\right\rangle=\left\langle b_{k}, b_{k}\right\rangle,\left\langle a_{k-1}, a_{k-1}\right\rangle=\left\langle b_{k-1}, b_{k-1}\right\rangle$ and $\gamma(s)$ is of k-type. And, from Lemma 3.1(2) and (3.2), we have

$$
\left\langle a_{k}, a_{k-1}\right\rangle=\left\langle a_{k}, b_{k-1}\right\rangle=\left\langle b_{k}, a_{k-1}\right\rangle=\left\langle b_{k}, b_{k-1}\right\rangle=0 .
$$

The above equations complete the proof.

Lemma 3.3. Suppose that $\left\{a_{0}, a_{k-1}, b_{k-1}, a_{k}, b_{k}\right\}$ is a basis of E_{1}^{5} satisfying (3.2). If a pair $\left\{a_{\imath}, b_{\imath}\right\}(i=1,2, \cdots, k)$ satisfies

$$
A_{k \imath}=\bar{A}_{k z}=0 \text { and } A_{(k-1)_{2}}=\bar{A}_{(k-1)_{2}}=0,
$$

then $A_{22}=\bar{A}_{22}=0$ if and only if $M_{2}=\bar{M}_{2}=0$.
Proof. Put $a_{\imath}=A a_{0}+B a_{k-1}+C b_{k-1}+D a_{k}+E b_{k}$ and $b_{\imath}=F a_{0}+$ $G a_{k-1}+H b_{k-1}+I a_{k}+J b_{k}$. Combining Lemma 3.1(2) and (3.2), we have $B=H, C=-G, \quad D=J$ and $E=-I$. If $A_{22}=\bar{A}_{22}=0$, then we get $A=F=0$. Hence $M_{2}=4\left\langle a_{0}, a_{i}\right\rangle=0$ and $\bar{M}_{2}=4\left\langle a_{0}, b_{2}\right\rangle=0$.

By the same way, we can also prove the converse.
Lemma 3.4. Suppose that $\left\{a_{0}, a_{k-1}, b_{k-1}, a_{k}, b_{k}\right\}$ is a basis of E_{1}^{5} satisfying (3.2). If a pair $\left\{a_{2}, b_{2}\right\}(2=1,2, \cdots, k-2)$ is satisfies

$$
A_{k \imath}=\bar{A}_{k \imath}=A_{(k-1)_{2}}=\bar{A}_{(k-1) \imath}=0
$$

and

$$
D_{k z}=\bar{D}_{k z}=D_{(k-1)_{z}}=\bar{D}_{(k-1)_{z}}=0,
$$

then a_{\imath} and b_{\imath} are parallel to a_{0}.

Proof. Put $a_{\imath}=A a_{0}+B a_{k-1}+C b_{k-1}+D a_{k}+E b_{k}$ and $b_{\imath}=$ $F a_{0}+G a_{k-1}+H b_{k-1}+I a_{k}+J b_{k}$. From Lemma 3.1(2), (3.2) and our assumptions, we have $B=C=D=E=0, G=H=I=J=0$. It follows that $a_{2}=A a_{0}$ and $b_{2}=F a_{0}$.

The following is an example of a 2-type closed curve in the pseudohyperbolic space $H^{4}\left(-c^{2}\right)$ satisfying (3.2).

Example. The curve in E_{1}^{5}

$$
\gamma(s)=\frac{1}{\sqrt{2}}\left(2, \cos s, \sin s, \frac{1}{2} \cos 2 s, \frac{1}{2} \sin 2 s\right)
$$

is a 2-type closed curve on $H^{4}\left(-\frac{11}{8}\right)$.
In fact, since $<\gamma(s), \gamma(s)>=-\frac{11}{8}, \gamma(s)$ is a closed curve on $H^{4}\left(-\frac{11}{8}\right)$. And we know $<\gamma^{\prime}(s), \gamma^{\prime}(s)>=1$. Furthermore, $\gamma(s)$ can be expressed as

$$
\begin{aligned}
\gamma(s)= & \frac{1}{\sqrt{2}}(2,0,0,0,0) \\
& +\left\{\frac{1}{\sqrt{2}}(0,1,0,0,0) \cos s+\frac{1}{\sqrt{2}}(0,0,1,0,0) \sin s\right\} \\
& +\left\{\frac{1}{\sqrt{2}}\left(0,0,0, \frac{1}{2}, 0\right) \cos 2 s+\frac{1}{\sqrt{2}}\left(0,0,0,0, \frac{1}{2}\right) \sin 2 s\right\} .
\end{aligned}
$$

Hence $\gamma(s)$ is a 2-type closed curve satisfying the equations of (3.2).

For a higher k-type ($k \geq 3$) closed curve $\gamma(s)$ on $H^{4}\left(-c^{2}\right)$, we proved the following nonexistence theorems.

Theorem 3.1. There exists no 3-type closed curve $\gamma(s)$ on $H^{4}\left(-c^{2}\right)$ satisfying $M_{2}=\bar{M}_{2}=0$ and $D_{32}=\bar{D}_{32}=0$.

Proof. We assume the existence of the 3 -type closed curve

$$
\begin{aligned}
\gamma(s)=a_{0} & +a_{1} \cos \left(p_{1} s\right)+b_{1} \sin \left(p_{1} s\right)+a_{2} \cos \left(p_{2} s\right)+b_{2} \sin \left(p_{2} s\right) \\
& +a_{3} \cos \left(p_{3} s\right)+b_{3} \sin \left(p_{3} s\right)
\end{aligned}
$$

on $H^{4}\left(-c^{2}\right)$ satisfying $M_{2}=\bar{M}_{2}=0$ and $D_{32}=\bar{D}_{32}=0$. From Lemma 3.1, we see $M_{3}=\bar{M}_{3}=0$, and $A_{32}=\bar{A}_{32}=0$. Therefore $\left\{a_{0}, a_{2}, b_{2}, a_{3}, b_{3}\right\}$ is a basis of E_{1}^{5} satisfying (3.2) by Lemma 3.2 and our assumptions.

Case 1. In case of $\left\{p_{1}, p_{2}, p_{3}\right\}=\left\{p_{1}, 2 p_{1}, 3 p_{1}\right\}$, it follows that $\mathfrak{A}=\left\{p_{1}, p_{2}-p_{1}, p_{3}-p_{2}\right\} \cup\left\{2 p_{1}, p_{2}, p_{3}-p_{1}\right\} \cup\left\{p_{1}+p_{2}, p_{3}\right\} \cup\left\{p_{1}+\right.$ $\left.p_{3}, 2 p_{2}\right\} \cup\left\{p_{2}+p_{3}\right\} \cup\left\{2 p_{3}\right\}$. Applying (2.3), (2.4), (2.6) and (2.7) for the subclasses $\left\{p_{1}, p_{2}-p_{1}, p_{3}-p_{2}\right\}$ and $\left\{2 p_{1}, p_{2}, p_{3}-p_{1}\right\}$ of \mathfrak{A}, we obtain

$$
\begin{array}{ll}
A_{31}=\bar{A}_{31}=0, & D_{31}=\bar{D}_{31}=0, \\
A_{21}=\bar{A}_{21}=0, & D_{21}=\bar{D}_{21}=0, \\
M_{1}=\bar{M}_{1}=0 . &
\end{array}
$$

Substituting Lemma 3.4, we get $a_{1}=b_{1}=0$. It contradicts.
Case 2. In case of $\left\{p_{1}, p_{2}, p_{3}\right\}=\left\{p_{1}, 2 p_{1}, 4 p_{1}\right\}$, it follows that $\mathfrak{A}=\left\{p_{1}, p_{2}-p_{1}\right\} \cup\left\{2 p_{1}, p_{2}, p_{3}-p_{2}\right\} \cup\left\{p_{1}+p_{2}, p_{3}-p_{1}\right\} \cup\left\{p_{3}, 2 p_{2}\right\} \cup$ $\left\{p_{1}+p_{3}\right\} \cup\left\{p_{2}+p_{3}\right\} \cup\left\{2 p_{3}\right\}$. From Lemma 3.1(1), we get

$$
\begin{array}{ll}
A_{31}=\bar{A}_{31}=0, & D_{31}=\bar{D}_{31}=0, \\
A_{21}=\bar{A}_{21}=0, & D_{21}=\bar{D}_{21}=0, \\
M_{1}=\bar{M}_{1}=0 . &
\end{array}
$$

Hence, Lemma 3.4 leads to a contradiction.
Case 3. In case of $\left\{p_{1}, p_{2}, p_{3}\right\}=\left\{p_{1}, 3 p_{1}, 5 p_{1}\right\}, \mathfrak{A}=\left\{p_{1}\right\} \cup$ $\left\{2 p_{1}, p_{2}-p_{1}, p_{3}-p_{2}\right\} \cup\left\{p_{2}\right\} \cup\left\{p_{1}+p_{2}, p_{3}-p_{1}\right\} \cup\left\{p_{3}\right\} \cup\left\{p_{1}+\right.$ $\left.p_{3}, 2 p_{2}\right\} \cup\left\{p_{2}+p_{3}\right\} \cup\left\{2 p_{3}\right\}$. Applying (2.3), (2.4), (2.6) and (2.7) for the subclasses $\left\{2 p_{1}, p_{2}-p_{1}, p_{3}-p_{2}\right\}$ of \mathfrak{A}, we obtain

$$
\begin{array}{ll}
A_{31}=\bar{A}_{31}=0, & D_{31}=\bar{D}_{31}=0, \\
A_{21}=\bar{A}_{21}=0, & D_{21}=\bar{D}_{21}=0, \\
A_{11}=\bar{A}_{11}=0 . &
\end{array}
$$

Therefore, Lemmas 3.3 and 3.4 lead to a contradiction.
Case 4. Let $\left\{p_{1}, p_{2}, p_{3}\right\} \neq\left\{p_{1}, 2 p_{1}, 3 p_{1}\right\},\left\{p_{1}, 2 p_{1}, 4 p_{1}\right\}$ or $\left\{p_{1}, 3 p_{1}, 5 p_{1}\right\}$. In this case, each subset \mathfrak{A}_{n} of \mathfrak{A} consists of at most two elements. Hence, Lemmas 3.3 and 3.4 lead to a contradiction by Lemma.3.1(1).

Summarizing all cases, we complete the proof of this theorem.

From Theorem 3.1, we have the following corollary.
Corollary 3.1. There exists no 3-type closed curve $\gamma(s)$ on $H^{4}\left(-c^{2}\right)$ satisfying $\left\langle a_{0}, a_{2}\right\rangle=\left\langle a_{0}, b_{2}\right\rangle=0$ and $\left\langle a_{3}, a_{2}\right\rangle=\left\langle a_{3}, b_{2}\right\rangle=0$.

Next, we get the following
Theerem 3.2. There exists no 3-type ciosed curve with combtant curvature on $H^{4}\left(-c^{2}\right)$.

Proof. In this case, each subset \mathfrak{A}_{n} of \mathfrak{A} consists of at most three elements. Hence, by Lemmas 3.1(1) and 3.2, $\left\{a_{0}, a_{2}, b_{2}, a_{3}, b_{3}\right\}$ is a basis of E_{1}^{5}. This implies a contradiction by Lemma 3.4.

Theorem 3.3. There exists no 4-type closed curve with constant curvature on $H^{4}\left(-c^{2}\right)$ satisfying $D_{43}=\bar{D}_{43}=0$.

Proof. Assume the existence of the 4 -type closed curve

$$
\gamma(s)=a_{0}+\sum_{t=1}^{4}\left\{a_{t} \cos \left(p_{t} s\right)+b_{t} \sin \left(p_{t} s\right)\right\}
$$

satisfying the conditions. Let \mathfrak{A}_{2} be the subclass consisting of all elements in \mathfrak{A} to be equal to p_{2}. Then the number of elements in \mathfrak{A}_{3} (and \mathfrak{A}_{4}) is less than or equal to three. Hence, from Lemma 3.1, we obtain $M_{4}=\bar{M}_{4}=0, M_{3}=\bar{M}_{3}=0$ and $A_{43}=\bar{A}_{43}=0$. Thus $\left\{a_{0}, a_{3}, b_{3}, a_{4}, b_{4}\right\}$ is a basis of E_{1}^{5} satisfying (3.2) by Lemma 3.2 and our assumptions.

Case 1. Let $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}=\left\{p_{1}, 2 p_{1}, 3 p_{1}, 4 p_{1}\right\}$, it follows that $\mathfrak{A}=\left\{p_{1}, p_{2}-p_{1}, p_{3}-p_{2}, p_{4}-p_{3}\right\} \cup\left\{2 p_{1}, p_{2}, p_{3}-\dot{p}_{1}, p_{4}-p_{2}\right\} \cup$ $\left\{p_{3}, p_{1}+p_{2}, p_{4}-p_{1}\right\} \cup\left\{p_{4}, 2 p_{2}, p_{1}+p_{3}\right\} \cup\left\{p_{1}+p_{4}, p_{2}+p_{3}\right\} \cup$ $\left\{2 p_{3}, p_{2}+p_{4}\right\} \cup\left\{p_{4}+p_{3}\right\} \cup\left\{2 p_{4}\right\}$. Applying (2.3), (2.4), (2.8), (2.9) and Lemma 3.3 for the subclasses $\left\{p_{2}, 2 p_{1}, p_{4}-p_{2}, p_{3}-p_{1}\right\}$ and $\left\{p_{1}, p_{4}-p_{3}, p_{3}-p_{2}, p_{2}-p_{1}\right\}$ of \mathfrak{A}, we obtain

$$
\begin{array}{ll}
A_{41}=\bar{A}_{41}=0, & D_{41}=\bar{D}_{41}=0, \\
A_{31}=\bar{A}_{31}=0, & D_{31}=\bar{D}_{31}=0, \\
M_{1}=\bar{M}_{1}=0 . &
\end{array}
$$

Hence, Lemma 3.4 leads to a contradiction.
Case 2. In case of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \neq\left\{p_{1}, 2 p_{1}, 3 p_{1}, 4 p_{1}\right\}$, Let $\mathfrak{a}_{+}^{\prime}$ be the subclass consisting of all elements in 2^{\prime} to be equal to p_{i}. Then the number $\left|\mathfrak{R}_{t}^{\prime}\right|$ of elements in $\mathfrak{A}_{t}^{\prime}$ is less than or equal to three. Furthermore, $\left|\mathfrak{A}_{4,-1}\right| \leqq 3$ and $\left|\mathfrak{A}_{3,-1}\right| \leqq 3$, where $\mathfrak{A}_{4,-1}$ is the subclass of \mathfrak{A}^{\prime} containing $p_{4}-p_{1}$. From Lemma 3.1(1), we get

$$
\begin{array}{ll}
A_{41}=\bar{A}_{41}=0, & D_{41}=\bar{D}_{41}=0, \\
A_{31}=\bar{A}_{31}=0, & D_{31}=\bar{D}_{31}=0, \\
M_{1}=\bar{M}_{1}=0 . &
\end{array}
$$

Hence, Lemmas 3.3 and 3.4 lead to a contradiction.
Summarizing above two cases, we complete the proof of this theorem.

From Theorem 3.3, we have also the following two corollaries.
Corollary 3.2. There exists no 4-type closed curve with constant curvature on $H^{4}\left(-c^{2}\right)$ satisfying $\left\langle a_{4}, a_{3}\right\rangle=\left\langle a_{4}, b_{3}\right\rangle=0$.

Corollary 3.3. There exists no 4-type closed curve $\gamma(s)$ on $H^{4}\left(-c^{2}\right)$ satisfying $<\gamma^{(l)}(s), \gamma^{(l)}(s)>$ is constant $(l=2,3)$.

Theorem 3.4. There exists no 5-type closed curve $\gamma(s)$ on $H^{4}\left(-c^{2}\right)$ with $D_{54}=\bar{D}_{54}=0$ satisfying $<\gamma^{(l)}(s), \gamma^{(l)}(s)>$ is constant $(l=$ 2,3).

Proof. Assume the existence of the 5-type closed curve

$$
\gamma(s)=a_{0}+\sum_{t=1}^{5}\left\{a_{t} \cos \left(p_{t} s\right)+b_{t} \sin \left(p_{t} s\right)\right\}
$$

satisfying our conditions. In this case, $\left\{a_{0}, a_{4}, b_{4}, a_{5}, b_{5}\right\}$ is a basis of E_{1}^{5} satisfying (3.2).

Case 1. Let $\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}=\left\{p_{1}, 2 p_{1}, 3 p_{1}, 4 p_{1}, 5 p_{1}\right\}$, it follows that $\mathfrak{A}=\left\{p_{1}, p_{2}-p_{1}, p_{3}-p_{2}, p_{4}-p_{3}, p_{5}-p_{4}\right\} \cup\left\{2 p_{1}, p_{2}, p_{3}-\right.$ $\left.p_{1}, p_{4}-p_{2}, p_{5}-p_{3}\right\} \cup\left\{p_{3}, p_{1}+p_{2}, p_{4}-p_{1}, p_{5}-p_{2}\right\} \cup\left\{p_{4}, 2 p_{2}, p_{1}+\right.$ $\left.p_{3}, p_{5}-p_{1}\right\} \cup\left\{p_{5}, p_{1}+p_{4}, p_{2}+p_{3}\right\} \cup\left\{2 p_{3}, p_{1}+p_{5}, p_{2}+p_{4}\right\} \cup\left\{p_{2}+p_{5}, p_{3}+\right.$ $\left.p_{4}\right\} \cup\left\{2 p_{4}, p_{3}+p_{5}\right\} \cup\left\{p_{5}+p_{4}\right\} \cup\left\{2 p_{5}\right\}$. Applying (2.3), (2.4), (2.8), (2.9), Lemmas 3.1 and 3.3 for the subclasses $\left\{p_{2}, 2 p_{1}, p_{3}-p_{1}, p_{4}-p_{2}, p_{5}-p_{3}\right\}$ of \mathfrak{A}, we obtain

$$
\begin{array}{ll}
A_{52}=\bar{A}_{52}=0, & D_{52}=\bar{D}_{52}=0 \\
A_{42}=\bar{A}_{42}=0, & D_{42}=\bar{D}_{42}=0 \\
A_{22}=\bar{A}_{22}=0 &
\end{array}
$$

Hence, Lemmas 3.3 and 3.4 lead to a contradiction.
Case 2. In case of $\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\} \neq\left\{p_{1}, 2 p_{1}, 3 p_{1}, 4 p_{1}, 5 p_{1}\right\}$, let $\mathfrak{a}_{\boldsymbol{t}}^{\prime}$ be the subclass consisting of all elements in \mathfrak{A}^{\prime} to be equal to p_{t}. Then the number of elements in $\mathfrak{A}_{\boldsymbol{t}}^{\prime}$ is less than or equal to four. Hence, Lemma 3.4 leads to a contradiction by Lemma 3.1.

Finally, we have also the following corollary.
Corollary 34. There exists no 5 -type closed curve $\gamma(s)$ on $H^{4}\left(-c^{2}\right)$ satisfying $<\gamma^{(l)}(s), \gamma^{(l)}(s)>$ is constant $(l=2,3,4)$.

References

[1] B. Y Chen, On submanifolds of finate type, Soochow J Math 9 (1983), 65-81
[2] \qquad Total Mean Curvature and Submanzfolds of Finite type, World Scientıfic, 1984.
[3] , Finite type submanıfolds in pseudo-Euchdean spaces and applications, Kodai Math. J. 8 (1985), 358-374.
[4] __, Finzte type pseudo-Rremannzan submanzfolds, Tamkang J Math. 17 (1986), 137-151
[5] B Y. Chen, J. Deprez, F Dillen, L. Verstraelen and L. Vrancken, Finate type curves, Geometry and Topology of Submanzfolds II, World Scientific, 1990, pp. 76-110.
[6] B. Y Chen, F Dillen and L. Verstraelen, Finite type space curves, Soochow J Math. 12 (1986), 1-10.
[7] S Ishikawa, On Brharmonıc Submanifolds and Finıte Type Submanıfolds in a Euchdean Space or a Pseudo-Euchdean Space, Doctal thesis in Kyushu Untversity
[8] S. Kobayashi and K. Nomizu, Foundations of Dafferential Geometry Vol. I and II, Wiley (Interscience), 1963 and 1969.
[9] B. O'Nell, Semi-Riemannzan Geometry, Academic press, 1983.
[10] Y S. Pyo and Y J Kım, Finte type closed curves on pseudo-hyperbolic spaces, Far East J. Math. Sci 4(2) (1996), 149-162.

Division of Mathematical Sciences
Pukyong National University
Pusan 608-737, Korea
E-mail : yspyo@dolphin.pknu.ac.kr

