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SOME NONEXISTENCE THEOREMS OF
FINITE TYPE CLOSED CURVES ON THE
PSEUDO-HYPERBOLIC SPACE H*(—c?)

Kyouncg-HwA SHIN AND YONG-S00 Pyo

ABSTRACT We obtain some theorems on nonexistence of certain
fimte type closed curves on the pseudo-hyperbolic space H4(—c?)
in the Minkowski spacetime E}.

1. Introduction

First, we will survey briefly the fundamental concepts and properties
in the pseudo-Riemannian geometry. We refer mainly to O’Neill({9])
and Chen([3],[4]). For the general concepts 1 the Riemannian geome-
try, refer to the book of Kobayashi and Nomizu([8}).

Let M be a C*-class differentiable manifold of dimension n and g
a C*°-class differentiable symmetric nondegenerate tensor field of type
(0,2) on M. The pseudo-Riemannian metric g, at every point p of M
defines the scalar product on the tangent space T,(M) of M at p. The
index of g, is not necessarily constant in general. If the index of g,
is constant (0 < t < n) on M, then we call ¢ a pseudo-Riemannian
metric of signature (t,n — ). And a C*°-class differentiable manifold
(M, g) furnished with a pseudo-Riemannian metric g is calied a pseudo-
Riemannian manifold. A pseudo-Riemannian mamfold of signature
{0,n) means a Riemannian manifold. Let v be a tangent vector to a

pseudo-Riemannian manifold M with a pseudo-Riemannian metric g.
Then v is said to be

spacelike if g(v,v) >0o0rv =0,
lightlike if g(v,v) =0 and v # 0,
timelike if g{v,v) <0
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The simplest example of pseudo-Riemannian manifold is a pseudo-
Euclidean space.defined as follows;

Let (z!, x2,--- ,z™) be a point in the set R™ of all ordered m-tuples
of real numbers. For each ¢(0 < ¢ < m), we define a scalar product go
on Tp(R™) at the point p of R™ by

t m
go(vp,'wp) = —thwl_l_ Z 'utw;’

i=1 t=t+1

where v, = Y ;v v'0/82" and w, = Y .-, w'@/0z*. E* denotes a

R™ with a canomcal pseudo-Riemannian metric gg. In this case, go

is called a pseudo-Euclidean metric of signature (t,m —t) and E{" is

called a pseudo-Euclidean space of signature (¢,m — t). In particular,
7 is called a Minkowski spacetime.

Now, let x : M — E® be an isometric immersion of a pseudo-
Riemannian manifold M of dimension n into an m-dimensional pseudo-
Euclidean space F}* of signature (¢,m — t). If z has the spectral de-
composition as follows:

k
I:-'CUO'*'Z.'B,ZA.’L}zAgZCI, ) '-)éO| Az#’\](’#]%

=1

then M is called to be of k-type submanifold and z k-type immersion,
where A is the Laplace operator on M. Ifone of A,, 2 =1,2,--- |k is
zero, then submanifold M or immersion z is said to be of null k-type.

The following theorem presents a necessary condition for M to be
of k-type submanifold.

THEOREM A[2,3]). Let M be a pseudo-Riemannian submanifold of
E™ and H the mean curvature vector field of M. If M is of k-type,
then there is a polynomial P(X) of degree k such that P(A)H = 0.

If M is compact, the converse is also satisfied. That is,
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THEOREM B{3]. Let M be a compact pseudo-Riemannian subman-
ifold isometrically immersed in a pseudo-Euclidean space E{*. If there
exists a nontrivial polynomial P(X} such that P(AYH =0, then M is
of finite type.

REMARK. Finite type curves in a Euclidean space were investigated
in [1,2,5,6] etc.

From now on, we will <, > instead of a pseudo-Euclidean metric gg.
And we denote by H*(~c?) = {p € E[}{'| < p,p >= —c?}. In this
case, it is called the pseudo-hyperbolic space of radius ¢ > 0 and center
o in E{{‘;{l For a vector ag = (e1,a2,- - a4, ,8m) in B,

&

Y 4 N o
0=— \—G1, —ag, " U, 0t 41,342, , O}

is called the conjugate vector of ag.
In {7] and [10], the authors proved the following

TueorREM C. Only I-type closed curve y(s) on H*(—c?) is an in-
tersection of H™(—c?) and a 2-plane P lying in Il,,, where P is deter-
mined by two spacelike vectors and Il,, denotes a hyperplane through
ag which is orthogonal to the conjugate vector &g in the sense of Eu-
clidean scalar product.

Ishikawa{[7]) also proved some nonexistence theorems concerning
finite type closed curves on a pseudo-hyperbolic space H?(—c?). For
instance,

THEOREM D. There exists neither 2-type closed curves nor 3-type
closed curves on H2(—c?).

The purpose of this article is to prove some nonexistence theorems
for a higher k-type (k > 3) closed curves on H*(—c?).
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2. Preliminaries

Every closed curve v : [0, 2n7] — E}™ of the length 277 in E]* may
be regarded as an isometric immersion of a circle of radius r into Ef".
We use the arc length s as a parameter of . Then the Laplacian A on
the circle is given by A = —~d?/ds? and the eigenvalues are {({/r)%;1 =
1,2,---}. The corresponding eigenspace V; is constructed by using
cos(ls/r) and sin(ls/r). Hence, every closed curve v : [0, 27r] — E[*
has the spectral decomposition

v(s) = ag + i{al cos(ls/r) + by sin(ls/r)},
=1

where a;,b; are some vectors in E* (see [2],[5]). In particular, if vy
is a k-type closed curve of the length 27 on H™*{—c?), then -y can be
expressed as

k
(2.1) (s} = ap + Z{a, cos(p,s) + b, sin(p,s)},
=1
where @, or b, is a nonzero vector in EJ* for each i = 1,2,--- |k, p, are

the positive integers with p; < p2 < --- < pg and s is the arc length
parameter of . Because of y(s) being on H*(—c?) and ag the center
of mass of 7, ao is a timelike vector in Ej}T! (see [7]). Furthermore,
from < v(s), ¥(s) >= —c?, we have the following

k
(2.2) 2 <aog,a0 > +2c2 + ) Dy, =0,
=1
(2.3) YoM A D Ant2 Y Aj+2 ) D=0,
p.=1 2p. =l p.t:;zl pl:;)j:l
(2'4) ZM"+Z/§"'+2 z Az_y_z Z D13=0
py=i 2p. =l Py¥py;=t By —p,=t

>3 t>)
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foreach I € {p,, 2p:, Do +p;, 1. — P, ; 1 < j < i<k}, where

M, =4 < ag,q, >, M, =4 < ag, b, >,
A,y =< a0, > — <b,b, >, A, =<a,b, >+ <b,a, >,
Dy; =< ay,0; > + < b, b, >, Dy, =< a,,b, > — < b, a; >.

_ From now on, we call the real numbers M, and M, (resp. A,; and
Ay, Ay and Ay, or Dy, and D,)) to be corresponding to the integer

p.(resp. 2p,, p. + pj, or p, — p,). Since s is the arc length parameter
of v(s), we have

k
(2.5) 2= plD.,
1=1
(2.6) Z PgAn +2 z Pupy Ay — 2 Z ppy Dy =0,
2p,=i Pytry=t Pa—py =1
1> >3
(27) Z 'P?Au +2 Z ptpj;ﬁag +2 Z D, DU =0.
2p,=! Pytp, =l Pr—p,=i
1> > 7

Moreover, if < 7{)(s), 4(")(s) > is constant (r = 1,2,---), then we
have

(28) D> PAn+2 D () As+(-1)"2 Y (pp;) Diy =0,

2p.=l P.tp,=t Py =P, =t
w3 12>y
29) > pFA.+2 D (pp) Ay —(-1)"2 Y (pp,) Dy =0
2p, =1 Pytpy =t Po—py=1
139 >3

Next, let v be a k-type closed curve on H*(~c?) given in (2.1).
Divide the set % = {p,, 2p,, . +P;, P —P; , 1 < J < i <k} as the
union of the subsets as follows:

(2.10) A=A UAsU---UApn,

where all elements in each subset A,,(n = 1,2, -+, N) are equal to each

other and if n; # na, then every element i %,,, is not equal to any
element in A,,,.
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3. Main results

Let + be a closed k-type curve on HJ*(—c?) in EJ}1'. Then v is

k
expressed as y(s) = ag + > {a, cos(p,s/r) + b; sin(p,s/r)}, where a, or
=1

b; is a nonzero vector in E’;Tl'l for each i = 1,2,--- ,k and p, are the

positive integers satisfying p; < pg < --- < pr. Here s is the arc length
parameter of v and the length of vy is 2ar. Therefore every k-type
closed curve (s} of the length 27 may be described as

k
(3.1) ¥(s) = ag + }:{az cos(p,s) + b, sin(p,s) }.

=]

We prove our results for » = 1, because the proof for case r # 1 is same
as one for case of r = 1.

LemMA 3.1[7). (1) If < 4")(s), v\"}(s) > is constant (r = 1,2,
-+-,1) and the number of members in 2, is less than or equal to { + 1,
then M, and M, (resp. A,, and A,,, A,; and A,;, or D,, and D,,) of
corresponding to the integer p, (resp. 2p,, p, +p;, or p, — p,;) in Ay,
vanish.

(2) In particular, for every k-type closed curve y(s) on H™(—c?) in

E7t, we have

Apr = Apr =0,
Akk-1) = Ax(p-1) =0,
Ag-1y(k-1) = Agk-1)(x-1) = 0.

Now, let y(s) be a k-type closed curve on H4(—c?) as (3.1). Then
we can obtain the following three lemmas.

LEMMA 3.2. If y(s) satisfies the following conditions
(3.2) Mk = Mk = Mk-—l = Mk—l =0 and Dk(k—l) = Dk(k—l) = 0,

then ax_1,bx_1, ar, by are spacelike vectors and {ag, @k —-1,bk—1, 0k, bk}
forms a basis of E3.
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Proof. Since ag is a timelike vector in E§ and < ag, a >=< ap, by >

= < ap,0k—1 >=< ap,by_1 >=0, ag_1,bx_-1,ar and by are spacelike
vectors(see (7]). Furthermore, ay_y,bx_1, ax and by, are nonzero vectors

because < ap,er >=< by, by >, < ar_1,a5-1 >=< bx_1,bx_1 > and
v(s) is of k-type. And, from Lemma 3.1{(2) and (3.2), we have

< @k, k-1 >=< Qg,bp—1 >=< bg,ap_1 >=< by, br_1 >=0.

The above equations complete the proof.

LEMMA 3.3. Suppose that {ag,ar_1,bx_1,ak,bx} is a basis of E}
satisfying (3.2). If a pair {a,,b,}{i = 1,2,--- , k) satisfies

,Ak.,, = .Ak, =0 and A(k_.l),f-—*- A(k—l)z s O,
then A,, = A,, = 0 if and only if M, = M, = 0.

Proof. Put a, = Aag+ Bag_; +Cbr_1+ Day + Eb, and b, = Fag +
Gag-1+Hby_y+1ax+Jb;. Combining Lemma 3.1(2) and (3.2), we have
B=H C=-G, D=Jand E = —1. If A, = A, =0, then we get
A=F =0. Hence M, =4 < ag,a; >=0and M, =4 < ag,b, >=0.

By the same way, we can also prove the converse.

LeMMA 3.4. Suppose that {ag,ar_1,br—1,ak,br} is a basis of E}
satisfying (3.2). If a pair {a,,b,}(2 = 1,2,--- ,k — 2) is satisfies

Ape = Ay = Agm1yy = Ag—1) =0

and

Dy = Dgy = Dig—1y, = Dig—1), =0,

then a, and b, are paralle] to ay.
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Proof. Put a, = Aag + Bay_y + Cbx_y + Day + Eby and b, =
Fap+Gag—y + Hbe_y + Tag + Jbi. From Lemma 3.1(2), (3.2) and our
assumptfions, wehave B=C=D=F=0,G=H=1=J=0. It
follows that a, = Aag and b, = Fay.

The following is an example of a 2-type closed curve in the pseudo-
hyperbolic space H4(—c?) satisfying (3.2).

ExaMPLE. The curve m E}

| 1
v(s) = 7 (2, cos s, sin s, 5 cos 2s, %sin 23)

is a 2-type closed curve on H*(—11).
In fact, since < ~(s), 7(s) >= —%, ¥(s) is a closed curve on

HY(-4'). And we know < 9'(s}, ¥'(s) >= 1. Furthermore, ¥(s)
can be expressed as

(s) =\—;—§

1
+{$(0, 1, 0, 0, 0)cos s+~—\}_—§

1 1
+{E(0, 0, 0, 7 0) cos 2s + %(O, g, 0, G, %)sin 23}.

2, 0, 0, 0, 0)

(0, 0, 1, 0, 0)sin s}

Hence 7(s) is a 2-type closed curve satisfying the equations of (3.2).
For a higher k-type (k > 3) closed curve y{s) on H4(—¢?), we proved
the following nonexistence theorems.

THEOREM 3.1. There exists no 3-type closed curve ¥(s) on H*(—c?)
satisfying My = My = 0 and D3y = D3y = 0.
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Proof. We assume the existence of the 3-type closed curve

¥(8) = ap + ay cos(pys) + by sin(pys) + az cos(pes) + be sin(pys)
+ a3 cos(p3s) + bz sin(pzs)
on HY(—c?) satisfying My = My = 0 and D3; = D33 = 0. From
Lemma 3.1, we see M3 = M3 = 0, and Az, = A3y = 0. Therefore

{ap,a2,b2,a3,b3} is a basis of E} satisfying (3.2) by Lemma 3.2 and
our assumptions.

Case 1. In case of {p1, p2, p3} = {p1, 2p1, 3p1}, it follows that

A= {p1, p2—p1, p3—P2}U{2p1, p2, ps—p1}U{p1+p2, p3}U{p1 +
p3, 2p2} U{p2 + p3} U {2ps}. Applying (2.3), (2.4), (2.6) and (2.7) for
the subclasses {p1, pa — p1, ps — p2} and {2p1, p2, p3 ~ 1} of A, we

obtain
Az = A3y =0, D3y = D31 =0,
Agy = A9 =0, Dy = Dy =0,
Ml e M] =0.
Substituting Lemma 3.4, we get a; = b; = 0. It contradicts.
Case 2. In case of {p1, pa2, p3} = {p1, 2p1, 4p1}, it follows that
A = {p1, p2 —p1}U{2p1, p2, p3—p2}U{p1+p2, p3—p1}U{ps, 2p2}U
{p1 + p3} U {p2 + p3} U {2p3}. From Lemma 3.1(1), we get
Az = A3 =0, D3y = D3y =0,
A9y = Ag; =0, Dy = Dy =0,
M] = Ml = Q.
Hence, Lemma 3.4 leads to a contradiction.
Case 3. In case of {p1, p2, pa} = {p1, 3p1, Sp1}, A = {p1} U
{2p1, P2 —p1, P3—p2} U {p2} U {p1 +p2, p3 — 1} U{ps} U {p1 +

p3, 2p2} U{p2 +p3} U {2p3}. Applying (2.3), (2.4), (2.6) and (2.7) for
the subclasses {2p1, p2 — p1, ps — p2} of A, we obtain

Az = A3y =0, D3y = D3; =0,
Ag = Ay =0, Doy = Dy =0,
Ay = Ay =0.



214 Kyoung-Hwa Shin and Yong-Soo Pyo

Therefore, Lemmas 3.3 and 3.4 lead to a contradiction.

Case 4. Let {p1, p2, pa} # {p1, 2p1, 3p1}, {p1, 2P, 4dp1} or
{p1, 3p1, 5p1}. In this case, each subset 2A,, of A consists of at most
two elements. Hence, Lemmas 3.3 and 3.4 lead to a contradiction by
Lemma 3.1(1).

Suramarizing all cases, we complete the proof of this theorem.

From Theorem 3.1, we have the following corollary.

COROLLARY 3.1. There exists no 3-type closed curvey(s) on H*(—c?*)
satisfying < ag, a2 >=< ag,be >=0 and < a3,az >=< az, by >=0.

Next, we get the following

TaeoreM 3.2. There exists no 3-type ciosed curve with consiant
curvature on H4(—c?).

Proof. In this case, each subset 2, of A consists of at most three
elements. Hence, by Lemmas 3.1(1) and 3.2, {ao, a2, b2, a3, b3} isa
basis of E}. This implies a contradiction by Lemma 3.4.

THEOREM 3.3. There exists no 4-type closed curve with constant
curvature on H4(~c?) satisfying D43 = D43 = 0.

Proof. Assume the existence of the 4-type closed curve

4
v(8) = ap + Z{at cos(p:s) + by sin(pes)}

t=1

satisfying the conditions. Let 2, be the subclass consisting of all el-
ements in %A to be equal to p,. Then the number of elements in 2A3
(and ?A,) is less than or equal to three. Hence, from Lemma 3.1, we
obtain My = My = 0, M3 = M3 = 0 and Ag3 = Ass = 0. Thus
{ao, a3,b3,a4,b4} is a basis of E} satisfying (3.2) by Lemma 3.2 and
our assumptions.
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Case 1. Let {p1, p2, p3, pa} = {p1, 21, 3p1, 4p1}, it follows that
A = {p1, p2 —P1, P3— P2, pa—p3} U {2p1, p2, P3 — D1, Pa— P2} U
{p3, p1 +p2s Pa—p1}U {ps, 2p2, 1 + p3} U {p1 + ps, P2 +ps} U
{2p3, P2 +pa} U{psa + p3} U {2p4}. Applying (2.3), (2.4), (2.8), (2.9)
and Lemma 3.3 for the subclasses {p2, 2p1, ps — p2, p3 — p1} and

{p1, P4 — P3, p3 — P2, p2 — p1} of A, we obtain

Ag=An =0, Dy = D41 =0,
Az = A3; =0, D3y = D3 =0,
M, =M, =0.

Hence, Lemma 3.4 leads to a contradiction.

Case 2. In case of {py, p2, p3, pa} # {P1, 2p1, 3p1, 4p1}, Let
A} be the subclass consisting of all elements in A’ to be equal to p;.
Then the number |2}| of elements in 2} is less than or equal to three.
Furthermore, |%4 —1! £ 3 and |A3,_1] £ 3, where 24 _; is the subclass
of 2’ containing ps — p;. From Lemma 3.1(1), we get

Ay = A4 =0, D41 = D4y =0,
Az = Az =0, D3y = D33 =0,
M, = M1 ={.

Hence, Lemmas 3.3 and 3.4 lead to a contradiction.

Summarizing above two cases, we complete the proof of this theo-
rem.

From Theorem 3.3, we have also the following two corollaries.

COROLLARY 3.2. There exists no 4-type closed curve with constant
curvature on H4(—c?) satisfying < a4,a3 >=< aq,b3 >=0.

COROLLARY 3.3. There exists no 4-type closed curve ¥(s) on H*(—c?)
satisfying < v (s), +{¥(s) > is constant (I = 2,3).
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THEOREM 3.4. There exists no 5-type closed curve y(s) on H*(—c?)
with Dss = Dsq = 0 satisfying < 79(s), 7Y(s) > is constant (I =
2,3).

Proof. Assume the existence of the 5-type closed curve

v(s) = ap + Z{at cos(pes) + be sin(pes)}

t=1

satisfying our conditions. In this case, {ag, a4, bq,as5,bs} is a basis of
E} satisfying (3.2).

Case 1. Let {p1, p2, p3, P4, ps} = {p1, 2p1, 3p1, 4p1, 5p1}, it
follows that % = {p1, p2—p1, P3—P2, Pa—pa, Ps—Pa}U{2py, P2, P3—
P1, Pa— P2, Ps — Pa}U{p3, p1+p2, pa—p1, ps —p2}U{ps, 2p2, ;1 +
P3, ps—P1}U{Ps, Pripe, p2tp3}U{2ps, prips, prtpa}U{pstps, p3+
Pa}U{2p4, p3+ps}U{ps+pa}U{2ps}. Applying (2.3),(2.4),(2.8), (2.9),
Lemmas 3.1 and 3.3 for the subclasses {ps, 2p1, p3—p1, Pa—p2, Ps—P3}
of A, we obtain

Asz = Asp = 0, Dsg = Dsy =0,
A = A4 =0, Dyg = Dyp =0,
Agg = Ags = 0.

Hence, Lemmas 3.3 and 3.4 lead to a contradiction.

Case 2. In case of {p1, p2, p3, pa, Ps} # {1, 21, 3;, 4p1, 5P},
let 2} be the subclass consisting of all elements in 2’ to be equal to

pt- Then the number of elements in A} is less than or equal to four.
Hence, Lemma 3.4 leads to a contradiction by Lemma 3.1.

Finally, we have also the following corollary.

COROLLARY 3 4. There exists no 5-type closed curve y(s) on H*(—c?)
satisfying < v (s), YW (s) > is constant (I = 2,3, 4).
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